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In the context of item response theory (IRT), linking the scales of two measurement
points is a prerequisite to examine a change in competence over time. In educational
large-scale assessments, non-identical test forms sharing a number of anchor-items
are frequently scaled and linked using two− or three-parametric item response models.
However, if item pools are limited and/or sample sizes are small to medium, the
sparser Rasch model is a suitable alternative regarding the precision of parameter
estimation. As the Rasch model implies stricter assumptions about the response
process, a violation of these assumptions may manifest as model misfit in form of
item discrimination parameters empirically deviating from their fixed value of one. The
present simulation study investigated the performance of four IRT linking methods—
fixed parameter calibration, mean/mean linking, weighted mean/mean linking, and
concurrent calibration—applied to Rasch-scaled data with a small item pool. Moreover,
the number of anchor items required in the absence/presence of moderate model misfit
was investigated in small to medium sample sizes. Effects on the link outcome were
operationalized as bias, relative bias, and root mean square error of the estimated
sample mean and variance of the latent variable. In the light of this limited context,
concurrent calibration had substantial convergence issues, while the other methods
resulted in an overall satisfying and similar parameter recovery—even in the presence
of moderate model misfit. Our findings suggest that in case of model misfit, the share
of anchor items should exceed 20% as is currently proposed in the literature. Future
studies should further investigate the effects of anchor item composition regarding
unbalanced model misfit.

Keywords: Rasch model, item response theory, linking methods, model misfit, anchor- items design, limited item
pools

INTRODUCTION

Investigating differences between groups that were administered non-identical test forms in an
item response theory (IRT) framework requires aligning two (or more) test forms onto a common
scale, which is known as linking (Kolen and Brennan, 2014). As the process of linking requires an
overlap of information among scales, this is frequently achieved by using an anchor-items design
(Vale, 1986, p. 333–344), where test forms share a number of common items. Linking is a common
procedure in the context of large-scale assessments (LSA) in educational measurement such as the
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Programme of International Student Assessment (PISA) or the
American National Assessment of Educational Progress (NAEP),
which are characterized by large item pools and sample sizes. As
such, LSAs provide an appropriate field for the application of 2-
parameter logistic (2PL) and 3-parameter logistic (3PL) models
(Birnbaum, 1968, p. 397–472) as a basis for scaling and linking
the data. In contrast, in contexts which are characterized by a
limited pool of items and small to medium sample sizes (as
often is the case in studies with restricted economical resources
or longitudinal designs) the sparser Rasch (1960) model is a
suitable alternative (Sinharay and Haberman, 2014, p. 23–35). As
of yet, the linking of Rasch-scaled data in this specific context was
rarely researched.

In this article, we systematically investigate the linking of
Rasch-scaled data based on limited item pools and small to
medium sample sizes. To mimic applied settings, the data
simulation mirrored a longitudinal design similar to the German
National Educational Panel Study (NEPS; Blossfeld et al., 2011).
Although mean change in a longitudinal design is often larger
than differences among groups in a cross-sectional design, the
linking is conceptually equivalent (von Davier et al., 2006). More
specifically, the present simulation study deals with the issues of
comparing and evaluating the performance of four IRT linking
methods and investigating the absolute and relative number
of anchor items required in these contexts. Moreover, as strict
assumptions are made on equal item slopes in the Rasch model
that are hardly met in empirical data, the robustness of linking
methods toward model-data misfit is investigated.

In the following sections, we describe the Rasch model,
the four common IRT linking methods, as well as challenges
inherent to linking with limited item pools and sample sizes.
Next, we describe the set-up of the simulation study and
report the present findings. Finally, we discuss implications and
limitations of our results.

THE RASCH MODEL

In the Rasch (1960) model, it is assumed that the probability P
of person n ∈ 1 . . . N to correctly answer a dichotomous item
i ∈ 1 . . . I is conditioned on the interaction of two parameters,
that is, a person’s ability βn and an item’s difficulty δi on a latent
continuum:

P (Xni = 1 | βn, δi) =
exp (βn − δi)

1+ exp (βn − δi)
. (1)

Compared to 2PL and 3PL models, no parameter for item
discrimination αi is directly incorporated. Therefore, a higher
precision in (anchor) item difficulties can be obtained at smaller
sample sizes (Thissen and Wainer, 1982, p. 397–412) in the Rasch
(1960) model.

Every item i, belonging to a test form fitting a Rasch
model, measures the same latent construct with equal item
discriminations αi at all levels of β. Stated differently, items
are not allowed to differ in their power to discriminate among
persons (Wright, 1977, p. 97–116) and, thus, an irrevocable rank
order among individuals β1 . . . < βn < . . . βN is determined

based on the sufficient statistics of the person sum scores. As
it can be challenging for empirical data to fully meet this strict
specification, the question is not whether the data does or does
not fit to a model, but is rather a “matter of degree” (Meijer and
Tendeiro, 2015). As the weighting by αi of person sum scores is
ignored in case of Rasch model-data misfit (i.e., αi 6= 1), sample
mean and variance estimates of the latent variable might be biased
(Humphry, 2018, 216–228) as they are based on (1). Additionally,
the precision of (anchor) item difficulties decreases (Thissen and
Wainer, 1982, p. 397–412).

IRT LINKING METHODS

In IRT, only individual proficiencies and item difficulties
located on equally defined scales are directly comparable over
different measurement occasions (Kolen and Brennan, 2014). As
such, prior to investigating proficiency development or group
differences in an IRT framework, it is required to align two
(or more) test forms onto a common scale (e.g., using an
anchor-items design). As anchor item parameters are assumed
to be measurement invariant and, thus, to maintain their
difficulty over time, they allow for displaying an individual’s
change in proficiency. Several IRT linking methods exist,
differentially “translating” the linking information during the
linking process. The present study focuses on IRT linking
methods compatible with Rasch-type models (van der Linden
and Hambleton, 2013) that preserve uniform item discrimination
parameters across the linked scales (Fischer et al., 2019, p. 37–
64). The different linking methods scale the different test
forms either separately or concurrently. In separate calibration
methods, anchor item difficulty parameters of each test form
are estimated prior to the linking process. This subsequently
extracted link information is then implemented uniquely by
each linking method. Hence, a once established reference scale
remains unchanged throughout the course of measurement.
In the present section, the three different calibration methods
(1) fixed parameter calibration (Kim, 2006, p. 355–381), (2)
mean/mean linking (Loyd and Hoover, 1980, p. 179–193), and
(3) weighted mean/mean linking (van der Linden and Barrett,
2016, p. 650–673) are shortly described. Additionally, (4) a one-
step approach of simultaneously calibrating and concurrently
linking all test forms (e.g., Kim and Cohen, 1998, p. 131–
143) is presented.

Fixed Parameter Calibration (FPC)
The parameter of anchor item l ∈ 1L with L ⊆ I of test form A
intended to link are fixed using the estimated item parameters of
the referencing test form B:

δAl = δBl, (2)

leaving no possibility for differences in anchor item parameters.
Test forms based on a longitudinal design that vary in their sets
of anchor items are linked sequentially (i.e., after test form t2 is
linked to t1, t3 is linked to t2 and so on).
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Mean/Mean Linking (m/m)
To link test form A to test form B and, therefore, obtain the linked
item difficulty parameters δ∗Ai, the linking constant v is added to
each item δAi:

δ∗Ai = δAi + v; (3)

with v being the difference of the means of the anchor item
difficulty parameters δAL and δBL:

v = M (δBL) − M (δAL) . (4)

After the linking results that M(δ∗AL) = M(δBL).

Weighted Mean/Mean Linking (wm/m)
This approach incorporates estimation precision in weighting the
anchor item difficulty parameter estimates by the inverse of their
squared standard errors, SE−2

δAl
and SE−2

δBl
, prior to conducting a

mean/mean linking, replacing v with

v′ =

(∑L
l = 1 δBlSE−2

δBl

)
(∑L

l = 1 SE−2
δBl

) −
(∑L

l = 1 δAlSE−2
δAl

)
(∑L

l = 1 SE−2
δAl

) . (5)

As such, the precision of the anchor item difficulty estimates of
test forms A and B is taken into account, aiming at reducing
the link error (i.e., a reflection of the uncertainty introduced to
the link due to the selection of link items). In other words, v’ is
identical to v when the anchor item difficulty parameter estimates
have equal standard errors within a test form. Hence, weighted
mean/mean linking is expected to outperform mean/mean
linking when anchor items differ in precision.

Concurrent Calibration (CC)
All test forms are scaled concurrently in a one-step estimation
procedure, constraining the anchor item difficulties across time
points. As such, anchor item difficulties are simultaneously
fitted to best meet the characteristics of all measurement points
interacting with the samples’ proficiency distributions.

Imprecision of (anchor) item difficulty estimates is reflected
in their increased standard error (SE). In order to minimize
estimation imprecision in item and person parameter estimates at
each time point, a sample’s proficiency and a test’s difficulty should
considerably overlap (i.e., also known as test targeting). In other
words, the mean and variance of some test items’ difficulty should
closely fit the proficiency distribution of a respective sample. Of
course, this claim is also true for sets of anchor items. Since sets of
anchor items are administered repeatedly, they are expected to fit
several proficiency distributions simultaneously. Consequently,
the more diverging these proficiency distributions are, the more
wide-spread a section of the latent scale needs to be covered by
the sets of anchor items. It is to be noted that anchor items located
at the outer edges of these joint ability distributions are prone to
an increased SE. Svetina et al. (2013, p. 335–360) reported that a
mismatch between item and person parameter distributions (i.e.,
if the item difficulties are, on average, too easy or too difficult as
compared to the average proficiency distribution of the sample)
impacted the recovery of item difficulty parameters more than
the person parameter estimates. As such, linking methods that

do not derive the linking information from the item level may be
more “forgiving” with respect to imprecise estimates, as they are
more likely to cancel out. As was shown by van der Linden and
Barrett (2016, 650–673), the linking result of wm/m was superior
to m/m in situations when anchor items did not perfectly display
the samples’ ability distribution. Therefore, the estimated amount
of change is expected to be closer to its true value, compared to
a result that is based on linking methods that link on the item
level. Consequently, the method of weighted mean/mean linking
that accounts for possible imprecisions in difficulty estimates by
weighting anchor items by their SEs is expected to outperform
the linking methods mean/mean linking, concurrent calibration
and fixed parameter calibration (in the given order).

CHALLENGES FOR THE LINKING OF
RASCH-SCALED DATA

Model-Data Misfit
There is a rather limited body of research examining the influence
of Rasch model-data misfit on linking results. For example, Zhao
and Hambleton (2017, p. 484) showed that in an LSA context
with large sample sizes (N = 50,000) and long tests (78 items)
with many anchor items (k = 39) fixed parameter calibration was
more sensitive to model misfit and more robust against sizable
ability shifts (up to 0.5 logits) as compared to linking methods
that preserve the relation between item difficulty parameters
during linking (i.e., mean/sigma method; Marco, 1977, and the
characteristic curve methods; e.g., Stocking and Lord, 1983).
As such, model fit was crucial to the appropriate use of FPC.
So far, no research investigated the sensitivity and reactivity of
IRT linking methods toward model misfit under more realistic
conditions with smaller samples and shorter tests. Following
Zhao and Hambleton (2017, p. 484), we hypothesized that FPC
would be more sensitive toward model misfit as compared to CC,
whereas m/m and wm/m would be least affected.

Number of Anchor Items
Kolen and Brennan (2014) formulated a rule of thumb for large
item pools, proposing that the number of anchor items should
make up about 20%. Nothing was stated for item pools consisting
of less than 200 items. If a single anchor item would fully reflect
the latent construct and was free of differential item functioning
(DIF), this item would be sufficient for aligning two tests on
a common scale. As this hardly is the case in practice, several
anchor items are typically used in operational tests. Generally,
a larger number of anchor items is assumed to reduce random
link error and, thus, is expected to more precisely recover
the true value of mean change. Moreover, a larger number of
anchor items increase the content validity of the link. However,
when test length is rather short (i.e., 25 items) and changes
in proficiency between measurement points of a longitudinal
sample are expected to be sizable (i.e., ≥0.25 logits; Zhao and
Hambleton, 2017, p. 484), one repeatedly administered identical
test form (i.e., 100% anchor items) would potentially affect test
targeting and test reliability. In other words, when samples differ
substantially in their mean proficiencies, the number of anchor
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items in a short test form becomes a question of measurement
precision at each measurement point. More precisely: An item’s
difficulty that matches a sample’s mean ability well at the first
measurement point t1 cannot match a sample’s mean ability well
at the second measurement point t2 when there was a significant
change in the sample’s ability between t1 and t2. Here is a
demonstrative example: We assume that there is a significant
change in ability of a sample that is administered two test forms
with a length of 15 items sharing a number of 10 anchor items.
We further assume that these 10 anchor items have a very good
test targeting at t1. From that follows that the test targeting of
these 10 anchor items would have to be worse at t2, affecting
test reliability. Furthermore, administering items repeatedly may
provoke memory effects that become more probable to emerge
with an increasing number of anchor items. This leads to the
question which proportion of anchor items can optimally balance
measurement precision and linking information. Is the advice of
a 20% anchor items share transferable to (rather) short test forms?
In addition, questions about the minimum number of anchor
items necessary to accurately display growth, and how model-
data misfit interacts with the number of anchor items, remain.

To sum up, the present study aimed at comparing the
performance of four common IRT linking methods (fixed
parameter calibration, mean/mean linking, weighted mean/mean
linking and concurrent calibration) based on Rasch-scaled
simulated data. Particularly, we examined to what degree the
number of anchor items and the degree of Rasch model-data
misfit affected the linking for the different approaches.

METHODS

Data Generation
We simulated data for four time points (t1–t4) to measure within-
individual growth in an anchor-items design (Vale, 1986, p. 333–
344). The simulation was modeled after empirical data from the
German National Educational Panel Study (NEPS; Blossfeld et al.,
2011). The NEPS aims at measuring competence development
over the life span. Therefore, respondents from different age
cohorts (e.g., 10- or 15 years old) are followed and receive
repeated competences tests at different ages in their lives. Thus,
the measured competences of these respondents are characterized
by large changes across childhood and adolescence. As such,
the NEPS is confronted with various methodological issues such
as linking test forms administered at different ages that vary
significantly in their average difficulty. Nonetheless, these tests
were intended to measure the same underlying construct. To gain
deeper insight in the linking process under these conditions the
setup of the present simulation study was oriented on reading
tests, that were administered in grades 5, 7, 9, and 12 of the
NEPS (Pohl et al., 2012; Krannich et al., 2017; Scharl et al., 2017).
The observed mean proficiencies (in logits) were 0.0, 0.7, 1.2,
and 1.5, respectively. Similar, we randomly drew proficiencies
from normal distributions with these means and unit variances.
We simulated responses to four test forms each including 25
items. The true item difficulties were generated in R 3.5.2 (R Core
Team, 2018) from multivariate normal distributions matching

the proficiency distributions (see Table 1), thus, resulting in
a good test targeting. As the anchor items had to fit two
distributions simultaneously (t1/2, t2/3, t3/4), they were set to
fall between two distributions (see Tables 1, 2). Anchor items
maintained their difficulty parameters over time and as such met
the assumption of measurement invariance. The item response
models were estimated using the R-package TAM 3.1-26 (Kiefer
et al., 2018) that iteratively updated the prior ability distribution
using the EM algorithm (Bock and Aitkin, 1981, p. 443–459)
during MML estimation (Kang and Petersen, 2012, p. 311–
321). Due to the need of extensive computational power for
the concurrent calibration, the quasi Monte Carlo estimation
algorithm (based on 1,000 nodes) was used, whereas the Gauss-
Hermite quadrature was used for the other linking methods. The
original code for data generation is provided at https://osf.io/
7vta8/.

Experimental Factors
For each simulated sample the four test forms (t1–t4) were
linked based on the four linking methods of fixed parameter

TABLE 1 | True item difficulty and item discrimination parameters of the four test
forms (t1–t4).

Difficulty Discrimination

Position t1 t2 t3 t4 t1 t2 t3 t4

1 t1/2_1: −1.255 t3/4_1: −0.272 t1/2_1: 0.804 t3/4_1: 1.267

2 t1/2_2: −0.755 t3/4_2: 0.154 t1/2_2: 1.068 t3/4_2: 1.026

3 t1/2_3: −0.415 t3/4_3: 0.576 t1/2_3: 1.266 t3/4_3: 1.237

4 t1/2_4: 0.170 t3/4_4: 1.015 t1/2_4: 0.935 t3/4_4: 0.949

5 t1/2_5: 0.534 t3/4_5: 1.493 t1/2_5: 0.737 t3/4_5: 0.789

6 t1/2_6: 0.766 t3/4_6: 1.615 t1/2_6: 0.862 t3/4_6: 0.923

7 t1/2_7: 0.966 t3/4_7: 1.889 t1/2_7: 1.270 t3/4_7: 1.023

8 t1/2_8: 1.328 t3/4_8: 2.533 t1/2_8: 1.240 t3/4_8: 1.022

9 t1/2_9: 1.900 t3/4_9: 3.218 t1/2_9: 0.935 t3/4_9: 1.038

10 −2.537 t2/3_1: −1.048 0.149 0.767 t2/3_1: 1.040 0.808

11 −1.328 t2/3_2: 0.148 0.229 1.029 t2/3_2: 0.930 0.926

12 −0.998 t2/3_3: 0.578 0.270 0.940 t2/3_3: 1.010 1.134

13 −0.832 t2/3_4: 0.723 0.277 0.832 t2/3_4: 1.130 1.164

14 −0.664 t2/3_5: 0.925 0.342 0.973 t2/3_5: 0.930 0.884

15 −0.459 t2/3_6: 1.061 0.567 0.782 t2/3_6: 1.040 1.048

16 −0.360 t2/3_7: 1.570 0.957 0.808 t2/3_7: 0.960 0.860

17 −0.210 t2/3_8: 1.855 1.476 1.132 t2/3_8: 0.920 0.849

18 0.032 t2/3_9: 2.737 1.549 0.887 t2/3_9: 1.090 1.226

19 0.182 −0.485 −0.068 2.017 1.202 0.850 0.969 0.969

20 0.214 −0.258 0.166 2.266 1.147 1.100 0.971 1.110

21 0.300 0.187 0.312 2.529 0.987 1.040 1.136 0.823

22 0.602 0.864 1.620 2.995 1.165 0.880 0.821 0.966

23 0.769 1.365 1.921 3.094 0.860 1.100 0.941 1.012

24 0.879 1.738 2.434 3.170 1.321 0.850 1.096 0.993

25 1.498 2.489 2.961 3.393 0.928 1.170 0.935 1.188

M 0.013 0.707 1.205 1.500 0.995 1.006 1.008 1.009

SD 1.008 1.051 1.096 1.159 0.178 0.144 0.111 0.138

Framed parameters represent anchor items linking adjacent measurement points.
Position = item position in each test form; t1/2, t2/3, t3/4 = true anchor item
parameters linking measurement points t1, t2, t3, t4; M = mean of 25 true item
parameters; SD = standard deviation of 25 true item parameters.
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TABLE 2 | Descriptive statistics of the true anchor item parameters split by the experimental factor number of anchor items.

t1/2 t2/3 t3/4

Anchor item difficulty parameters

Anchor Position M SD Position M SD Position M SD

3 2,5,8 0.369 1.051 2,5,8 0.976 0.855 2,5,8 1.393 1.193

5 2,3,4,6,9 0.333 1.050 1,5,6,7,8 0.873 1.138 2,3,4,6,9 1.316 1.193

7 1,2,4,5,6,7,9 0.332 1.066 1,3,4,5,6,8,9 0.976 1.169 1,3,4,5,6,7,9 1.362 1.096

9 1–9 0.360 1.022 1–9 0.950 1.074 1–9 1.358 1.120

Anchor item discrimination parameters

Position M SD Position M SD Position M SD

3 2,5,8 1.015 0.256 2,5,8 0.927 0.006 2,5,8 0.946 0.136

5 2,3,4,6,9 1.013 0.160 1,5,6,7,8 0.978 0.058 2,3,4,6,9 1.035 0.123

7 1,2,4,5,6,7,9 0.944 0.178 1,3,4,5,6,8,9 1.023 0.077 1,3,4,5,6,7,9 1.032 0.171

9 1–9 1.013 0.206 1–9 1.006 0.076 1–9 1.030 0.148

Anchor = Number of anchor items used for linking; t1/2, t2/3, t3/4 = true anchor item parameters linking adjacent measurement points; Position = selected anchor items
out of anchor set (see Table 1 for anchor item identification); M = mean of true anchor item parameters; SD = standard deviation of true anchor item parameters.

calibration, mean/mean linking, weighted mean/mean linking,
and concurrent calibration. Model fit was varied in two ways
by either meeting the Rasch model assumptions of constant
item discriminations (αi = 1) or modeling slight deviations
(see Table 1) by drawing them from N(1, 0.142). The resulting
item discrimination parameters mirrored empirical results from
a 2PL scaling of the tests (Krannich et al., 2017) mentioned
above and, thus, were assumed to reflect a moderate degree of
misfit within the range of operational proficiency test forms.
Linking was based on a number of 3 (12%), 5 (20%), 7 (28%), or
9 (36%) common items among adjacent test forms (see Table 1).
While 5 anchor items fell in line with recommendations in
the literature (Kolen and Brennan, 2014), the other conditions
evaluated the consequence of using more anchor items (7 or 9)
or relying on a very restricted set of anchor items. The sample
size condition was varied twofold (N = 500, N = 3,000). Overall,
in addition to the within-subject experimental factor (four IRT-
linking methods), three between-variable experimental factors—
model fit (2), number of anchor items (4) and sample size (2)—
were manipulated resulting in 4 × 2 × 4 × 2 = 64 conditions.
Each within-subject experimental condition was simulated 100
times, to control for random sampling error.

Outcome Variables
We examined (a) the convergence rate of models as well as
calculated (b) bias, (c) relative bias, and (d) root mean square
error (RMSE) for sample mean and variance of the latent
variable. The bias was calculated as τ̂d − τ, with τ̂d denoted as
parameter estimate of the kth replication of condition d and τ

denoting the true parameter value. The bias was then averaged
over all k replications of each condition. Serving as an effect
size, the relative bias was calculated as a proportion of (τd −

τ)/τ, with τd being the averaged parameter estimate over all
k replications. Following Forero et al. (2009, p. 625–641), we
considered a relative bias below 10% as acceptable. The RMSE

gives the precision of a parameter estimate and was calculated

as
√

1
c
∑c

k = 1 (̂τk − τ)2. As such the RMSE was defined as the
square root of the mean of the squared bias.

RESULTS

Only negligible differences among the three linking methods
of fixed parameter calibration, mean/mean and weighted
mean/mean linking were found with regard to the outcome
variables bias, relative bias and RMSE. Results are, therefore,
reported combined. Descriptive statistics split by linking methods
and experimental factors of the respective outcome variables are
reported in Supplementary Tables 2–5.

Convergence Rates
Only 50.8% (i.e., 813 of 1,600 samples) of the models calibrated
concurrently converged. Non-convergence was split about evenly
among the experimental factors of sample size and model-
data misfit, but varied substantially among different numbers
of anchor items (see Supplementary Table 1). Moreover, in-
depth analyses (not reported in this manuscript) of successfully
converged concurrently calibrated models revealed that smaller
numbers of iteration steps did not necessarily lead to a more
precise parameter estimation. As these findings were questioning
the applicability of concurrent calibration in settings based on
small absolute numbers of anchor items, it was excluded from
further analyses. In contrast, all models that were calibrated
separately (fixed parameter calibration, mean/mean linking and
weighted mean/mean linking) converged.

Sample Mean
Bias
Overall, there was no (change in) bias over the three time
points (Mt2−t4 = 0.00; t1 was constrained to 0 due for model
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identification) in the absence of model misfit. Neither sample size
nor the number of anchor items had a substantial effect on the
consistency of the bias of sample mean in the absence of model
misfit (see Figure 1); although the bias was marginally smaller
when sample size was N = 3,000 compared to N = 500. However,
the sample mean was less well recovered in case of moderate
model misfit (see Figure 1 and Supplementary Table 2). Rather
consistently, the sample mean was underestimated over the three
time points, t2–t4, in all conditions but the conditions based on
linking using 9 (36%) anchor items. The amount and pattern
of the bias of sample mean emerged in a rather heterogeneous
picture among time points and the number of anchor items.
Overall, we found that the bias of sample mean rather decreased
with an increasing number of anchor items.

Relative Bias
The relative bias was always explicitly below 10% and only rose
above 5% in 2 conditions (see Supplementary Table 2) and was,
thus, considered acceptable.

RMSE
The RMSE of sample mean linearly increased from t2 to t4
(see Figure 2). Sample size influenced the amount of RMSE
as expected: smaller sample size led to a bigger RMSE with
marginally steeper slope over time (N = 500: t2 = 0.06 (SD = 0.04),
t3 = 0.08 (SD = 0.06), t4 = 0.10 (SD = 0.08) compared to a larger
sample size (N = 3,000: t2 = 0.03 (SD = 0.02), t3 and t4 = 0.04
(SDt3,t4 = 0.03). Additionally, the RMSE of sample mean was
in general smaller when linking based on a larger number of
anchor items. More precisely, a larger number of anchor items
seemed more beneficial for a smaller sample size (N = 500). It

has to be noted that a moderate Rasch model-data misfit did
not necessarily lead to a decreased estimation precision of the
sample mean. Rather the effect of model misfit on the RMSE of
sample mean seemed to depend on the number of anchor items
and was intercepted when the linking was based on at least 5
(20%) anchor items.

Sample Variance
Bias
Overall, there was no change in bias or its SD over the four
time points (Mt1−t4 = 0.00, SDt1−t4 = 0.06) in the absence of
model misfit. Neither sample size nor the number of anchor items
had a substantial effect on the consistency of the bias of sample
variance in the absence of model misfit (see Figure 3). In case
of moderate Rasch model-data misfit, the sample variance was
marginally underestimated at t1 and almost rose back to its true
value with measurement progressing. This finding was similarly
observed for different number of anchor items and sample size.

Relative Bias
The relative bias was considered acceptable in all conditions as it
was always below 5% (see Supplementary Table 4).

RMSE
The RMSE of sample variance did not change from t1 to t4
(see Figure 4). Sample size influenced the amount of RMSE as
expected: smaller sample size led to a larger RMSE [N = 500:
t1–t4 = 0.07 (SDt1−t4 = 0.05)] compared to a larger sample size
[N = 3,000: t1–t4 = 0.03 (SDt1−t4 = 0.02)]. No effect was found on
the precision of the sample variance estimate due to the number
of anchor items or a moderate Rasch model-data misfit.

FIGURE 1 | Bias of sample mean over three time points (t2–t4). The figure is split by three linking methods and the experimental factors number of anchor items,
sample size and Rasch model-data fit. FPC = fixed parameter calibration, m/m = mean/mean linking, w. m/m = weighted mean/mean linking. 95% confidence
intervals are depicted.
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FIGURE 2 | RMSE of sample mean over three time points (t2–t4). The figure is split by the three linking methods and the experimental factors number of anchor
items, sample size and Rasch model-data fit. FPC = fixed parameter calibration, Mean/Mean = mean/mean linking, w. Mean/Mean = weighted Mean/Mean. 95%
confidence intervals are depicted.

FIGURE 3 | Bias of sample variance over four time points (t1–t4). The figure is split by three linking methods and the experimental factors number of anchor items,
sample size and Rasch model-data fit. FPC = fixed parameter calibration, m/m = mean/mean linking, w. m/m = weighted mean/mean linking. 95% confidence
intervals are depicted.

DISCUSSION

The present simulation study focused on the comparison
of four common IRT-linking methods (fixed parameter
calibration, mean/mean linking, weighted mean/mean linking
and concurrent calibration) within three experimental conditions
(number of anchor items, sample size and model-data fit). Due
to convergence issues, the application of concurrent calibration

is not advisable for Rasch-scaled data when linking is based
on a small absolute number of anchor items. The separate
calibration linking methods somewhat unexpectedly resulted in
negligible differences in the outcome variables of bias, relative
bias and RMSE of sample mean and variance of the latent
variable. Hence, the choice of linking method had no effect
on the link outcome. This finding may result from the well
fitted test targeting at each measurement point in the present
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FIGURE 4 | RMSE of sample variance over four time points (t1–t4). The figure is split by three linking methods and the experimental factors number of anchor items,
sample size and Rasch model-data fit. FPC = fixed parameter calibration, Mean/Mean = mean/mean linking, w. Mean/Mean = weighted Mean/Mean. 95%
confidence intervals are depicted.

study. Thus, even though mean change between time points was
substantial (up to 0.7 logits), there were only small differences
in measurement precision within each set of anchor items,
potentially depriving the method of weighted mean/mean
linking of its unique strength in adjusting for differences in
anchor item’s SEs. Moreover, different amounts of mean change
in proficiency over time were handled equally well by the three
separate calibration methods. It is to be noted that no differences
were found among the three linking methods in sensitivity and
reactivity regarding moderate Rasch model-data misfit in the
context of longitudinal linking.

In the absence of model misfit, the mean recovery of sample
mean and variance was very good, regardless of the sample size or
the number of anchor items used. However, in case of moderate
Rasch model-data misfit, the parameters of sample mean and
variance were generally slightly underestimated, suggesting an
influence of the empirical relationship of anchor item difficulty
parameters δi and anchor item discrimination parameters αi.
In contrast to prior findings reported in the literature (Zhao
and Hambleton, 2017, p. 484), no substantial differences in
performance were found between linking methods that based the
linking on the anchor item level (e.g., FPC) or the anchor set
level (e.g., m/m, wm/m). More specific, a certain composition of
δi and αi in the anchor items seemed to substantially influence
the estimation of sample parameters. Factors characterizing
this certain composition may include a deviation of item
discrimination from 1 on the anchor item and/or anchor set
level (i.e., whether misfit is balanced or not), the correlation’s
amount and/or direction of δi and αi as well as person-item
fit. Additionally, further investigating the consequences of Rasch
model-data misfit seems a promising approach in detangling
the compositional effects of anchor items. As the degree of

model misfit was assumed to reflect a moderate degree of misfit
within the range of operational proficiency test forms, we would
furthermore deduce that an increasing degree of model misfit
leads to an increasing deviation of parameter estimates from
their true parameter.

In the present simulation study, change in proficiency was
modeled as decelerating growth in steps of 0.7, 0.5, and 0.3 logits.
Nevertheless, the amount of change between two time points
seemed independent from the number of anchor items advisable
to sufficiently map the change in proficiency distributions of
the latent variable. This may suggest a transferability of the
present findings to situations in that differences among groups
are less pronounced.

It is to be noted, that the consistency of sample mean and
variance estimation differed in their sensitivity to the number of
anchor items in the case of moderate Rasch model-data misfit.
However, accumulating effects (as reported by Keller and Keller,
2011, p. 362–379) of bias were only found when linking was based
on 3 (12%) anchor items. While a number of 9 (36%) anchor
items seemed sufficient to somewhat balance moderate misfit and
resulted in good sample mean recovery, the recovery of sample
variance seemed independent of the number of anchor items
used. Similarly, for estimation precision of the sample mean, a
bigger number of anchor items somewhat attenuated moderate
Rasch model-data misfit, although this effect was more beneficial
to a smaller sample size. Estimation precision of sample variance
seemed to only depend on the sample size.

Practical Implications
As no substantial impact on parameter recovery of sample
mean and variance was found due to moderate Rasch model-
data misfit, the Rasch model seemed rather robust in the
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present context. However, special attention should be payed
to anchor items, as their characteristics critically determine
sample parameter estimates. Therefore, using a 2PL model
seems a practicable diagnostical tool to uncover noticeable
deviations in anchor item discrimination parameters. Only
marginal differences were found between the three IRT-linking
methods of fixed parameter calibration, mean/mean linking and
weighted mean/mean linking. More specifically, all of them were
equally robust toward a moderate Rasch model-data misfit and
different numbers of anchor items even when mean growth was
substantial (0.7 logits). As such, the decision for a linking method
could rely on more functional factors (e.g., scale preservation,
practicability) in case of a well fitted test targeting. If, however,
test targeting is expected to be poor, we agree with van der Linden
and Barrett (2016, p. 650–673) that weighted mean/mean linking
seems to be the preferable choice, as it allows for the inclusion of
measurement precision as well as leaving the “pre linking” model
fit unaltered. Furthermore, we would like to stress the point that
defining an appropriate share of anchor items should depend on
the respective Rasch model-data fit rather than following Kolen
and Brennan’s (2014) rule of thumb suggesting a share of 20%.
In case of moderate misfit, we suggest a number of 7 (36%)
anchor items, for the longitudinal linking of short (i.e., 25 items)
operational test forms when a Rasch model is used for scaling.
Additionally, in case of misfitting anchor items, findings hinted
on a compensatory effect when the misfit present is balanced
within an anchor item set.

Due to the issues of non-convergence and the
disproportionate occurrence of extreme values in parameter
recovery, concurrent calibration seemed less suitable for
common use than separate calibration methods in longitudinal
study designs using small absolute numbers of anchor items.

Limitations of the Study
The setup of the simulation study did not consider several
issues relevant in empirical contexts such as missing data or
differential item functioning in anchor items. Similarly, our
simulated anchor items exhibited good test targeting for the
two proficiency distributions intended to link, which might be
hard to achieve in operational assessments. These simplifications
of reality were taken into account in order to master the
complexity of the central issue. As a consequence, results may
be limited in their transferability to empirical data. Future
research should study these aspects in more detail and, thus,
could further elaborate on the conditions that allow precise
linking in the context of the Rasch model. Moreover, the present
study was motivated by operational LSAs which are usually
characterized by relatively large sample sizes and rather short test
forms. In other empirical settings that include smaller sample
sizes often substantially longer test forms can be administered.
Therefore, future research could address the particulars of
linking in these studies. Particularly, this research could also
explore whether alternative scaling approaches (e.g., the 2-
parameter logistic model) might show more pronounced benefits
for data exhibiting misfit to the Rasch model or whether the
linking results are comparable to the findings presented in
the present study.

As the mean of αi within anchor item sets as well as
the correlations of δi and αi in the present simulation study
were not varied systematically, the underlying mechanisms
affecting the recovery of sample mean and variance in case of
moderate Rasch model-data misfit was not fully traceable and,
thus, limited the conclusions on certain compositional effects
inherent to sets of anchor items. However, regarding longitudinal
measurements, considering the empirical correlation of δi and αi
only, would fall short for the effect of person-item fit. As anchor
item difficulties are held constant in repeated administrations
to samples with variable proficiencies, person-item fit differs
between time points. Therefore, differential effects of an anchor
item on the estimation of sample parameters (Bolt et al.,
2014, p. 141–162) are to be additionally considered between
time points in case of Rasch model-data misfit (Humphry,
2018, p. 216–228).

CONCLUSION

Overall, the challenges inherent to contexts characterized by
small absolute and relative numbers of anchor items due to
short test length as well as small to medium sample sizes
were mastered equally well by the three separate calibration
methods mean/mean linking, weighted mean/mean linking
and fixed parameter calibration, resulting in reliable and
valid parameter recovery. However, results of the present
simulation study suggested that the choice of linking method
is rather secondary when linking Rasch modeled data—
independent of the absence or presence of (moderate) model
misfit. More important seems the awareness of the practitioner
that a combination of moderate model misfit and certain
factors (e.g., empirical relation of δi and αi, composition
of anchor items, person-item fit, sample size) may lead to
a distorted parameter estimation—although at presence no
applicable diagnostics nor concrete guidelines for empirical
data seem at hand. As such, future research should analytically
deduce and systematically investigate the consequences of
an interaction between Rasch model-data misfit and certain
experimental factors.
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