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Abstract 

Measurement equivalence is a key concept in psychological assessment and a fundamental 

prerequisite for meaningful comparisons across groups. In the prevalent approach, multi-

group confirmatory factor analysis (MGCFA), specific measurement parameters are 

constrained to equality across groups. The degrees of freedom (df) for these models readily 

follow from the hypothesized measurement model and the invariance constraints. In light of 

the current methodological crisis that questions the soundness of statistical reporting in 

psychology, we explored reporting inconsistencies in MGCFA invariance testing. We 

reviewed 128 studies from six leading peer-reviewed journals focusing on psychological 

assessment and recalculated the df for 302 measurement invariance testing procedures based 

on the information given in the publications. Overall, about a quarter of all articles included at 

least one reporting inconsistency with metric and scalar invariance being more frequently 

affected. We discuss moderators of reporting inconsistencies and identify typical pitfalls in 

invariance testing. Moreover, we provide example syntax for different methods of scaling 

latent variables and introduce a ShinyApp that allows for the recalculation of df in common 

MGCFA models to improve the statistical soundness of invariance testing in psychological 

research. 

Keywords: reporting standards, reporting inconsistency, measurement invariance, 

structural equation modeling, degrees of freedom 
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Degrees of Freedom in Multi-Group Confirmatory Factor Analysis: 

Are Models of Measurement Invariance Testing Correctly Specified? 

Failures to replicate seemingly robust effects (Hagger et al., 2016; Simmons & 

Simonsohn, 2017; Wagenmakers et al., 2016) alongside questionable research practices that 

are commonly adopted in applied research (Simmons, Nelson, & Simonsohn, 2011) has put 

science in a state of turmoil, with psychology at its center. Fortunately, this methodological 

crisis has been understood not only as a threat but also as an opportunity to strengthen 

scientific conduct. In recent years, psychology as a discipline has begun to adopt a number of 

strategies to improve the robustness and trustworthiness of its findings (Chambers, 2017; 

Eich, 2014). These countermeasures include, among others, emphasizing statistical power 

(Bakker, van Dijk, & Wicherts, 2012), acknowledging uncertainty in statistical results 

(Cumming, 2014), undisclosing flexibility in data collection and analysis (Simmons et al., 

2011), and distinguishing between exploratory and confirmatory data analysis (Wagenmakers, 

Wetzels, Borsboom, van der Maas, & Kievit, 2012). Moreover, by adopting open practices 

such as making all material pertaining to a study including its questionnaires, experimental 

manipulations, raw data, and analyses scripts available to others, the replicability of the 

published findings are expected to increase (Nosek et al., 2015; Simonsohn, 2013). This 

transparency can be especially helpful to clarify why many peer-reviewed articles in 

psychology contain inconsistent statistical results that might impact the interpretation of its 

reported findings (Bakker & Wicherts, 2011; Cortina, Green, Keeler, & Vandenberg, 2017; 

Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts, 2016). Recent reviews highlighted 

major weaknesses in the reporting of null-hypothesis significance tests (NHST) and structural 

equation models (SEM) that seriously undermine the trustworthiness of psychological 

science. In the present study, we review potential deficits in the statistical reporting of multi-

group measurement invariance testing. 
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Reporting Inconsistencies in Statistical Results 

Statistical results of journal articles are typically vetted by multiple peer reviewers and 

sometimes additionally statistical editors. Despite the thorough review process, many 

published articles contain statistical ambiguities. For example, Bakker and Wicherts (2011) 

scrutinized 281 articles from six randomly selected psychological journals (three with high 

and three with low-impact factor) and found around 18% of the statistical results incorrectly 

reported. Most recently, Njuiten and her colleagues (2016) revigorated this line of research by 

introducing the R package statcheck that automatically scans publications for reporting errors, 

that is, inconsistencies between a reported test statistic (e.g., t-value, F-value), the degrees of 

freedom (df), and its corresponding p-value. The sobering result of scanning over 250,000 

publications of eight top-tier peer-reviewed journals (Nuijten et al., 2016) was that half of the 

articles contained at least one inconsistent p-value. Moreover, around 12% of the articles 

contained an inconsistency which changed the results significantly, often in line with the 

researchers’ expectations. Even though the text recognition and evaluation routine has been 

criticized for being too sensitive (Schmidt, 2016), the study points to serious issues in the way 

researchers report their findings. 

Considering the comprehensive methodological toolbox of psychologists, test statistics 

regularly used in NHST are comparatively simple. In applied research, more often 

sophisticated latent variable techniques are used to test structural hypotheses between several 

variables of interest. Recently, Cortina and colleagues (2017) reviewed 784 SEMs published 

in two leading organizational journals to examine whether the reported df matched the 

information given in the text. In case all necessary information was available to recalculate 

the df they only matched in 62% of the time. Reporting inconsistencies were particularly 

prevalent in structural (rather than measurement) models and were often large in magnitude. 

Thus, the trustworthiness of model evaluations seems questionable for a significant number of 

SEMs reported in the literature. In test and questionnaire development, methods used to 
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examine the internal structure, to determine the reliability, and estimate the validity of 

measures typically also rely on latent variable modeling. The implementation of such 

procedures in standard statistical software packages also extends the spectrum of test 

construction—besides the traditional topics of reliability and validity—to other pressing 

issues such as test fairness and comparability of test scores across groups. 

Measurement Invariance in Multi-Group Confirmatory Factor Analysis 

 Measurement invariance (MI) between two or more groups is given if individual 

differences in psychological tests can be entirely attributed to differences in the construct in 

question rather than membership to a certain group (see AERA, APA, & NCME, 2014). Thus, 

MI is an essential prerequisite to ensure valid and fair comparisons across cultures, 

administration modes, language versions, or sociodemographic groups (Borsboom, 2006b). 

Contemporary psychometric approaches to test for MI include various latent variable 

modeling techniques (e.g., Raju, Laffitte, & Byrne, 2002). In practice, multi-group 

confirmatory factor analysis (MGCFA) has become the de facto standard for testing MI in the 

psychological assessment literature, particularly for self-report instruments (see Putnick & 

Bornstein, 2016). Although different sequences can be implemented to test for MI (Cheung & 

Rensvold, 2002; Wicherts & Dolan, 2010), often a straightforward procedure of four 

hierarchical nested steps is followed (Millsap, 2011). In case constraining certain types of 

measurement parameters to equality leads to a considerable deterioration in model fit, the 

invariance assumption is violated. In the first step, configural MI, all model parameters except 

for necessary identification constraints are freely estimated across groups. For metric or weak 

MI, the factor loadings are constrained to invariance across groups allowing for comparisons 

of bivariate relations (i.e., correlations and regressions). In the third step, scalar or strong MI, 

the intercepts are set to be invariant in addition to the factor loadings. If scalar invariance 

holds, it is possible to compare the factor means across groups. In the last step, strict MI, 

additionally the item residuals are constrained to be equal across groups. 
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Depending on the chosen identification scheme for the latent factors (i.e., marker 

variable method, reference group method, and effects-coding method), different additional 

constraints have to be introduced (see Table 1): If a marker variable is selected for each latent 

factor, then its factor loading is fixed to 1, and its intercept is fixed to 0 in all MI steps 

outlined above. Alternatively, a reference group can be selected, which is sometimes preferred 

if the marker variable method exhibits convergence problems or choosing a marker variable 

will affect the results (Millsap, 2001). In practice, researchers frequently adopt a hybrid 

approach by fixing the factor loading of a marker variable to 1 and the mean of the latent 

variables in a reference group to 0 because this allows to interpret differences in factor means 

directly. Other identification schemes are possible and equally valid, but require different sets 

for identifying constraints. For example, Little, Slegers, and Card (2006) proposed a non-

arbitrary way of identifying the mean and covariance structure by constraining the mean of 

the loadings to 1 and the sum of the intercepts to 0 for each factor. Importantly, the choice of 

identification constraints does not affect the number of estimated parameters or the results of 

the MI tests. To facilitate the implementation of MI testing, we provide example syntax for all 

the typical MI steps for all three methods of identification in lavaan (Rosseel, 2012) and 

Mplus (Muthén & Muthén, 1998-2017) in the supplemental material. 
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Table 1. 

Constraints in MGCFA Tests for Measurement Invariance. 

Identification by Marker Variable 

  λ/ λm τ/ τm ε E(ξ) Var(ξ) 

(1) Configural invariance */ 1 */ 0 * * * 

(2) Metric invariance c/ 1 */ 0 * * * 

(3) Scalar invariance c/ 1 c/ 0 * * * 

(4) Strict invariance c/  1 c/ 0 c * * 

Identification by Reference Group 

  λ τ ε E(ξ)/ E(ξ(r)) Var(ξ)/ Var(ξ(r)) 

(1) Configural invariance * * * 0/ 0 1/ 1 

(2) Metric invariance c * * 0/ 0 */ 1 

(3) Scalar invariance c c * */ 0 */ 1 

(4) Strict invariance c c c */ 0 */ 1 

Identification by Hybrid Approach 

  λ/ λm τ ε E(ξ)/ E(ξ(r)) Var(ξ) 

(1) Configural invariance */ 1 * * 0/ 0 * 

(2) Metric invariance c/ 1 * * 0/ 0 * 

(3) Scalar invariance c/ 1 c * */ 0 * 

(4) Strict invariance c/ 1 c c */ 0 * 

Note. λ = factor loading, λm = factor loading for marker variable, τ = intercept, τm = 

intercept for marker variable, ε = residual variance, E(ξ) = latent factor mean, E(ξ(r)) = 

latent factor mean in reference group, Var(ξ) = latent factor variance, Var(ξ(r)) = latent 

factor variance in reference group, * = parameter is freely estimated in all groups, c = 

parameter is constrained to equity across groups, 0/ 1 = parameter is fixed to a value of 

0 or 1. 

 

The Present Study 

Given several critical reviews highlighting reporting inconsistencies in NHST and 

SEM (Bakker & Wicherts, 2011; Cortina et al., 2017; Nuijten et al., 2016), we were pursuing 

two objectives: First, we examined the extent of reporting inconsistencies in MI testing with 

MGCFA. Because the number of df for each MI step is mathematically determined through 
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the hypothesized measurement model, we recalculated the df for the aforementioned MI steps 

based on the information provided in articles that were published in major peer-reviewed 

journals focusing on psychological assessment in the last 20 years. Second, we tried to 

identify potential causes for the misreporting (e.g., the complexity of the model or the used 

software packages). Furthermore, we highlight potential pitfalls when specifying the different 

steps of MI testing. To this end, we also provide example syntax for MI testing and introduce 

an easy to handle ShinyApp that allows double-checking the df in MI testing. Thus, the 

overarching aim is to improve the statistical soundness of MI testing in psychological 

research. 

Method 

Inconsistent df in MI tests of MGCFA were identified among issues of six leading 

peer-reviewed journals from the last 20 years (1996 to 2016) that regularly report on test 

development and questionnaire construction: Assessment (ASMNT), European Journal of 

Personality Assessment (EJPA), Journal of Cross-Cultural Psychology (JCCP), Journal of 

Personality Assessment (JPA), Psychological Assessment (PA), and Personality and 

Individual Differences (PAID). Studies were limited to reports of MGCFA that included one 

or more of the four MI steps outlined above. Not considered were single group tests of MI 

(i.e., longitudinal MI or multi-trait multi-method MI), second-order models, exploratory 

structural equation models, or MI testing with categorical data.  

We first recalculated the df for all MI models from the information given in the text, 

tables, and figures (e.g., regarding the number of indicators, latent factors, cross-loadings). A 

configural model was coded as incorrect if the reported and recalculated df did not match. 

Then, the df for the metric, scalar, and strict MI model were also recalculated (syntax in the 

supplemental material) and compared to the reported df. In case, inconsistent df were 

identified at a specific step, the df for subsequent models were also recalculated by taking the 

reported (inconsistent) df of the previous step into account, which adopts a more liberal 
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perspective. For example, if an author claimed to have tested metric invariance while also 

constraining the factor variances across all groups, this step was coded as incorrect. However, 

if in scalar MI testing the intercepts were additionally set to be invariant, this was coded as 

correct (despite the constrained factor variances). The coding was limited to the four types of 

MI as outlined above and we did not code partial MI. Both authors coded about half of the 

studies. In case inconsistent df were identified, the other author independently coded the 

respective study again. Diverging evaluations were discussed until a consensus was reached. 

We provide our coding sheets and all syntax within the Open Science Framework (Center for 

Open Science, 2017) at 

https://osf.io/6nh9d/?view_only=9228190ad66746ed9d3ade4bc8dd0b51 

Results 

We identified a total of 302 MI testing sequences that were published in 128 different 

research articles. Most articles were published in PA (31.3%) and PAID (23.4%), followed by 

EJPA (16.4%) and ASMNT (13.3%), whereas fewer articles were retrieved from JCCP and 

PA (7.8% each). The number of articles reporting MI testing within a MGCFA framework 

recorded a sharp increase in recent years. Nearly two-thirds of the articles were published 

within five years between 2012 and 2016 and over 88% within the last ten years (see 

Figure 1). 
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Figure 1. Studies Reporting Measurement Invariance Tests Over Time. Note. The solid 

line represents the number of studies reporting MI tests; dashed line represents the number of 

studies with at least one reporting inconsistency. 

Out of 128 articles, 49 (38.3%) used Mplus to conduct MI testing, 24 (18.8%) used 

LISREL, and 23 (18.0%) used Amos. The remaining articles relied on specialized software 

such as EQS (n = 10) or R (n = 4), did not report their software choice (n = 17), or used more 

than one program (n = 1). On average, each article reported on 2.36 MI testing sequences (SD 

= 2.29, Max = 15). Further descriptive information on the model specification grouped by 

journal and publication year is summarized in Table S1 of the supplemental material.  

Inconsistencies in Reported Degrees of Freedom 

Half of the studies (48.4% ) reported multiple MI tests (e.g., for age and sex groups); 

that is, the identified MI tests were not independent. Since variation was found on the study 

level rather than the MI test level (intra-class correlation = .995), we analyzed reporting 

inconsistencies on the level of studies rather than single tests of MI. Therefore, we aggregated 

the results to the article level and examined for each article whether at least one inconsistent 

df was identified for the different models in each MI step. The analyses revealed that out of 

120 studies reporting configural MI, only 7 studies showed inconsistencies (5.8%, see 

Table 2). In contrast, tests for metric and scalar MI exhibited larger discrepancies between the 

reported and recalculated df (15.9% and 21.1%, respectively). Only one study reported 

incorrect df in strict MI.  

Table 2. 

Inconsistencies in Reported Degrees of Freedom. 

 Configural Metric Scalar Strict 

Number reported a 120 (93.8) 126 (98.4) 95 (74.2) 40 (31.3) 

Number inconsistent b 7 (5.8) 20 (15.9) 20 (21.1) 2 (0.1) 

Note. a Percentages refer to 128 studies. b Percentages refer to the number of reported studies. 
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Table 3. 

Predicting Occurrence of Inconsistencies Based on Study Characteristics 

Predictors B  SE z OR 95% CI AME  

(Intercept) -3.66 * 0.80 -4.57 0.03 [0.00, 0.10]   

(1) Complexity of model < 0.01 + < 0.01 1.76 1.00 [1.00, 1.00] .00 + 

(2) Year of publication 0.22 * 0.08 2.68 1.25 [1.07, 1.49] .03 * 

(3) Journal (ref.: Psychological Assessment, n = 40) 

 Assessment (n = 21) 

 European Journal of Psy. Assessment (n = 21)

 Journal of Cross-Cultural Psychology (n = 10) 

 Journal of Personality Assessment (n = 10) 

 Personality and Individual Differences (n = 30) 

 

1.07 

0.21 

1.69 

3.11 

1.38 

 

 

 

+ 

* 

+ 

 

0.85 

0.85 

1.00 

1.03 

0.72 

 

1.25 

0.24 

1.68 

3.01 

1.91 

 

2.91 

1.23 

5.40 

22.41 

3.97 

 

[0.54, 16.14] 

[0.21, 6.53] 

[0.72, 40.65] 

[3.19, 196.88] 

[1.01, 17.77] 

 

.13 

.02 

.23 

.48 

.17 

 

 

 

 

* 

+ 

(4) Software (ref: Mplus, n = 49) 

 AMOS (n = 23) 

 EQS (n = 10) 

 LISREL (n = 24) 

 Remaining (n = 22) 

 

1.85 

3.70 

2.07 

1.42 

 

* 

* 

* 

+ 

 

0.79 

0.99 

0.83 

0.86 

 

2.33 

3.73 

2.51 

1.66 

 

6.33 

20.54 

7.93 

4.14 

 

[1.43, 34.72] 

[6.64, 347.88] 

[1.68, 46.27] 

[0.78, 24.78] 

 

.23 

.57 

.26 

.16 

 

* 

* 

* 

Note. * p < .05; + p < .10. n = 128 studies. Logistic regression analysis with at least one inconsistency found (1) on study level versus not found (0) 

as an outcome. Predictors (1) and (2) were centered prior to analysis; predictors (3) and (4) were entered as dummy-coded variables. Nagelkerke’s 

R² = .37. AME = Average marginal effects (Williams, 2012)
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To shed further light on potential predictors of reporting inconsistencies, we 

conducted a logistic regression analysis using reporting inconsistency as an outcome (0 = no 

inconsistencies in df, 1 = at least one inconsistency in df). We added the (1) complexity of the 

model, (2) publication year, (3) journal, and (4) software package as predictors. Table 3 

summarizes the respective results. The complexity of the model did not predict the occurrence 

of reporting errors. In contrast, the year of publication influenced the error rate with more 

recent publications exhibiting slightly more reporting inconsistencies. Given that most of the 

studies have been reported in recent years, the average marginal effect (AME; Williams, 

2012) for an article including a reporting inconsistency was about 3.0% (p = .003) per year. 

Across all journals, a quarter of all published articles on MI included at least one df that we 

were unable to replicate (see dashed line in Figure S1 of the supplemental material). A 

comparison of the journals demonstrates subtle differences: In comparison to PA, the outlet 

that published most MI tests, JCCP (AME = 22.5%, p = .13) and PAID (AME = 17.4%, 

p = .05) reported slightly more inconsistent df. The highest rate of reporting inconsistencies 

between reported and recalculated df was found for JPA (AME = 48.3%, p = .001)—five of 

ten studies had inconsistencies. The most important predictor in the logistic analysis was the 

software package used in MI testing. In comparison to Mplus, studies using other software 

packages were more likely to report inconsistencies, that is, AMOS (AME = 22.3%, p = .02), 

LISREL (AME = 26.2%, p = .01), and most severely EQS (AME = 57.0%, p < .001). 

Pitfalls in Testing Measurement Invariance 

Without inspecting the analysis syntax of the reported studies, we can only speculate 

about the reasons for the identified reporting inconsistencies. However, in our attempts to 

replicate the df we spotted two likely sources of model specification: In testing metric MI, 

inconsistencies seem to have resulted in many cases (13 out of 20 flagged publications) from 

a misspecified model using the reference group approach for factor identification. As a 

reminder, the configural model includes fixing the variances of the latent variables to 1 in all 
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groups, while freely estimating all factor loadings. The metric model, however, requires 

equality constraints on the factor loadings across groups, while relaxing constraints on the 

variances of the latent variables except for the reference group. It seems that many authors 

neglected to free the factor variances and, thus, instead of testing a metric MI model, 

evaluated a model with invariant loadings and variances.  

Issues in reporting scalar MI can in many instances (12 out of 20 flagged studies) be 

traced back to a misspecified mean structure. SEM is a variance-covariance based modeling 

approach, and in a single group case, researchers are usually not interested in the mean 

structure. Therefore, scalar MI tests, in which the mean structure plays a vital role, seems to 

present particular difficulties and make up for the largest number of reporting inconsistencies. 

Again, we suspect that researchers adopting the reference group or hybrid approach for factor 

identification neglected to free previously constrained latent factor means (see Table 1). As a 

result, instead of testing for scalar MI, these models in fact evaluated invariant intercepts and 

means fixed to 0 across groups. Such model misspecifications are not trivial and have severe 

consequences for model fit evaluations: In a simulated MGCFA MI example, we compared a 

correctly specified scalar MI model with freely estimated latent factor means (except for the 

necessary identifying constraint) to a model, in which all factor means were fixed to zero. 
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Figure 2. Consequences of Fixing the Means to 0 in Scalar Measurement Invariance Testing 

on Model fit. 

Figure 2 demonstrates that already moderate differences in the latent means (d ≈ .50), 

result in a drop in the comparative fit index (CFI) from an initially good fitting model 

(CFI = .98) to values below what is usually considered acceptable (CFI ≥ .95). Thus, if the 

means are constrained to zero, any differences in the latent means are passed on to the 

intercepts; if these are also constrained to equality, the unmodeled mean differences can result 

in a substantial model deterioration. As a consequence, misspecified scalar MI models can 

lead to serious misinterpretation, that is, the rejection of the scalar MI model. 

Discussion 

The concept of measurement equivalence is pivotal for psychological research and 

practice. To address substantial research questions, researchers depend on information about 

the psychometric functioning of their instruments across sex and ethnic groups, clinical 

populations, etc. Accordingly, reporting issues in MI testing are not restricted to a specific 

field but affect different disciplines such as clinical and I/O psychology. The extent of 

inconsistencies found in the psychological assessment literature was rather surprising: One 
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out of four studies reporting MI tests included an incorrectly specified or, at least, 

insufficiently described model. Thus, a substantial body of literature on the measurement 

equivalence of psychological instruments seems to be questionable at best or inaccurate. This 

percentage is probably a lower boundary of the true error rate due to the way we coded the MI 

tests (i.e., no subsequent errors, exclusion of studies that specified different configural models 

across groups). Since our analysis was limited to inconsistencies in the df, it is possible that 

additional errors may have occurred (e.g., handling of missing data, incorporating nested 

structures, or using different estimators that might be more appropriate for categorical data). 

To identify these and similar flaws, both the raw data and the analyses scripts would be 

necessary to reanalyze the data.  

 Regarding the cause of reporting inconsistencies, the results of the logistic regression 

provide us with some valuable clues: The increased popularity of MGCFA MI testing in 

psychological research was accompanied by an increase in reporting inconsistencies. This is 

not an unusual pattern in the dissemination of psychological methods: After the formal (and 

often formalized) introduction of a new method by psychometricians more and more users 

adopt and apply the method—sometimes without a deeper understanding of the underlying 

statistics. However, the strongest effect on reporting issues was observed for the software 

package used to conduct MI tests. In comparison to Mplus, other software packages 

performed worse, which might be due to the extensive documentation and training materials. 

Or, it can more likely attributed to a selection effect, because more advanced users prefer 

scripting languages. Taken together, we think that the results of the logistic regression may 

point to a general problem with the formal methodological and statistical training of 

psychologists (Borsboom, 2006a).  
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Recommendations for Reporting MGCFA MI Testing 

 In the following, some recommendations are given to improve the accuracy of 

reporting statistical results in the framework of MI reporting. These recommendations apply 

to all parties involved in the publication process—authors, reviewers, editors, and publishers: 

First, make sure that all necessary information concerning the measurement model is 

described. This pertains not only to the specification of the number of indicators, factors, 

cross-loadings, residual covariances, and groups but also to the constraints introduced at the 

different MI steps. It should be explicitly stated which parameters were constrained and which 

constraints were relaxed (e.g., in the notes of a table), so that it is clear which models are 

nested within each other. In addition, model fit indices (including df) for all invariance steps 

should be reported. 

Second, use unambiguous terminology when referring to specific steps in MI testing. 

In our reading of the literature, we found several cases, in which the description in the method 

section did not match the restrictions given in the respective table. One way to clarify which 

model constraints have been introduced is to label the invariance step by the parameters that 

have been fixed (e.g., “invariance of factor loadings” instead of “metric invariance”). 

Third, in line with the recommendations of the Association of Psychological Science 

(Eich, 2014) and the extensive efforts of the Open Science Framework (Nosek et al., 2015) to 

make scientific research more transparent, open, and reproducible, we strongly advocate to 

make the raw data and the used analysis syntax available in freely accessible data repositories. 

As a pleasant side-effect, there is also evidence that sharing detailed research data is 

associated with increased citation rate (Piwowar, Day, & Fridsma, 2007). If legal restrictions 

or ethical considerations prevent the sharing of raw data, it is possible to create synthesized 

data sets (Nowok, Raab, & Dibben, 2016). 

Fourth, we encourage authors and reviewers to routinely double-check the df of the 

reported models. In this context, we welcome the recent effort of journals in psychology to 
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include soundness checks on manuscript submission by default to improve the accuracy of 

statistical reporting. To this end, one may refer to the supplemental material that includes 

example syntax for all steps of MI in lavaan and Mplus for different ways of scaling latent 

variables or use our ShinyApp to double-check the df of the different MI steps for a given 

model (https://psychresearch.shinyapps.io/df_in_mi/). 

Fifth, statistical and methodological courses need to be taught more rigorously in 

university teaching, especially in structured Ph.D. programs. A vigorous training should 

include both conceptual (e.g., Borsboom, 2006b; Markus & Borsboom, 2013) and statistical 

work (e.g., Millsap, 2011). To bridge the gap between psychometric researchers and applied 

working psychologists, a variety of teaching resources can be recommended that introduce 

invariance testing in general (Cheung & Rensvold, 2002; Wicherts & Dolan, 2010) or specific 

aspects of MI such as longitudinal MI (Geiser, 2013), and MI with categorical data 

(Pendergast, von der Embse, Kilgus, & Eklund, 2017).  
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