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Abstract

Careless responding is a bias in survey responses that disregards the actual item con-
tent, constituting a threat to the factor structure, reliability, and validity of psycholo-
gical measurements. Different approaches have been proposed to detect aberrant
responses such as probing questions that directly assess test-taking behavior (e.g.,
bogus items), auxiliary or paradata (e.g., response times), or data-driven statistical
techniques (e.g., Mahalanobis distance). In the present study, gradient boosted trees,
a state-of-the-art machine learning technique, are introduced to identify careless
respondents. The performance of the approach was compared with established tech-
niques previously described in the literature (e.g., statistical outlier methods, consis-
tency analyses, and response pattern functions) using simulated data and empirical
data from a web-based study, in which diligent versus careless response behavior was
experimentally induced. In the simulation study, gradient boosting machines outper-
formed traditional detection mechanisms in flagging aberrant responses. However,
this advantage did not transfer to the empirical study. In terms of precision, the
results of both traditional and the novel detection mechanisms were unsatisfactory,
although the latter incorporated response times as additional information. The com-
parison between the results of the simulation and the online study showed that
responses in real-world settings seem to be much more erratic than can be expected
from the simulation studies. We critically discuss the generalizability of currently
available detection methods and provide an outlook on future research on the detec-
tion of aberrant response patterns in survey research.
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Deliberate misreporting is a serious threat to the reliability and validity of social sci-

ence research. Increasing evidence suggests that some participants engage in dishon-

est behavior and cheat in unproctored achievement tests (Steger, Schroeders, &

Gnambs, 2020), distort their responses in line with prevalent social norms (Gnambs

& Kaspar, 2015), or simply do not invest the necessary effort to properly process a

survey question and indicate an elaborated response (Huang et al., 2015; Litman &

Robinson, 2020). Rather, a substantial proportion of survey respondents adopt cogni-

tive shortcuts, for example, by using specific response patterns such as selecting the

same response category for multiple items instead of evaluating the actual item con-

tent (Johnson, 2005). Particularly, in web-based studies, careless responses have

become a major hindrance to data quality (Bowling & Huang, 2018; Weiner &

Dalessio, 2006), which can substantially affect study results (Arias et al., 2020;

Huang et al., 2015). Accordingly, various data screening methods have been proposed

to identify careless respondents (Meade & Craig, 2012; Niessen et al., 2016), such as

probing items that directly assess test-taking behavior (e.g., bogus items), auxiliary or

paradata (e.g., response times), or data-driven techniques (e.g., Mahalanobis dis-

tance). In contrast, prediction methods that are commonly used in the machine learn-

ing literature, but (as of yet) are rarely used in sociological and psychological

research, have been somewhat neglected. Thus, we introduce stochastic gradient

boosting (Friedman, 2001) as a means to identify careless respondents in self-report

surveys. The novel approach is compared with established techniques using simulated

data that exhibit a clear allocation of cases to regular and careless respondents. In

addition, empirical data from a web-based experiment in which participants were

instructed to display different types of test-taking behavior (regular, inattentive) probe

the usefulness of the machine learning algorithm as compared with traditional tech-

niques for the detection of careless respondents.

Types and Sources of Careless Responding

The phenomenon of careless responding has been explained with different nuances

and labels: ‘‘content nonresponsivity’’ (Nichols et al., 1989, p. 239), ‘‘careless inat-

tentiveness’’ (Johnson, 2005, p. 104), ‘‘insufficient effort responding’’ (Huang et al.,

2012, p. 100), or ‘‘careless/insufficient effort’’ (Arias et al., 2020). Most commonly,

it is considered a bias in survey responses disregarding the actual item content.

Sometimes, this has been described as random responding (e.g., Berry et al., 1992).

However, this term is misleading because these responses can also follow some non-

random pattern (e.g., a recurring sequence of 1-2-3-4-5) and, more important, humans
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are incapable of producing true random sequences (Figurska et al., 2008). But the dis-

tinction between careless and random responses may point to the difference between

intentional and nonintentional response behavior. As Niessen et al. (2016) reflect on

a reviewer’s comment, careless responding is perceived as ‘‘the more benign form of

aberrant responding . . . , whereas random responding is more blatant and inten-

tional’’ (p. 1). Accordingly, in our understanding, careless responding covers both

intentionally and unintentionally answering items (Meade et al., 2017, p. 417) without

the intention of creating a specific image of oneself. Thus, careless responding does

not include, for example, malingering—the fabrication, feigning, or exaggeration of

physical or psychological symptoms to achieve some beneficial outcome (e.g., early

retirement, mitigating punishment, claim for compensation)—which is a common

concern in clinical and forensic psychology (Mittenberg et al., 2002). This distinction

between careless responding and faking or cheating may be subtle, but it is important

because the latter hinges on participants’ ability to fake (Geiger et al., 2018) and is

presumably much harder to detect (e.g., Karabatsos, 2003).

Prevalence estimates on the extent of careless responding vary considerably, from

modest 3.5% (Johnson, 2005), over 3% to 9% (Maniaci & Rogge, 2014), 10.6%

(Kurtz & Parrish, 2001) and 10% to 12% (Meade & Craig, 2012) up to 35% to 46%

(Oppenheimer et al., 2009). The large heterogeneity in estimates is presumably due

to the different operationalizations of true careless responding. Moreover, it is rea-

sonable to assume that studies differ in their extent of careless responding depending

on the study’s intention, the recruitment procedure, and incentives given. Regarding

the consequences, careless responding introduces systematic bias, whereas random

responses add noise to the measurement. Ultimately, such error variances reduce

reliability estimates, measurement precision, and also attenuate or inflate correlations

and, therefore, pose a threat to validity (Hong et al., 2020; Huang et al., 2015;

McGrath et al., 2010). In simulation studies, Credé (2010) convincingly showed that

base rates of careless responding as low as 5% can affect correlations in a similar

manner as, for example, range restriction or score unreliability. Accordingly, var-

iance–covariance-based methods are also affected by careless responding. For

instance, in case of scales with partially reversely coded items, careless responding

might contribute to the emergence of an additional method factor capturing the var-

iance of some negatively worded items of the same scale. Already 10% to 20% of

careless respondents in the sample are sufficient to render a single-factor confirma-

tory model incorrect (Woods, 2006; see also Huang et al., 2012). In the same vein,

Gnambs and Schroeders (2020) compared different measurement models for the fac-

tor structure of the Rosenberg Self-Esteem Scale across several continuous modera-

tors and concluded that the scale becomes more unidimensional with increasing

reading competence. Thus, superficial reading or comprehension problems are an

obvious source of careless responding, but there are several, potential reasons (e.g.,

test-taking motivation).
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Traditional Techniques for the Detection of Careless Respondents

Given the risk of biased results, a number of different methods have been proposed to

detect careless respondents. A rough distinction can be made between (a) special

items or scales assessing participants’ care, (b) the evaluation of auxiliary data from

computerized testing, and (c) statistical, data-driven methods. The first group includes

bogus items with an obvious correct answer (e.g., ‘‘I am paid biweekly by lepre-

chauns’’), or instructed response items to which participants have to react correctly

(e.g., ‘‘Please click strongly agree’’; Gummer et al., 2018, or the so-called blue dot

task; Oppenheimer et al., 2009), or self-report measures often placed at the end of a

survey that directly ask for participants’ diligence and engagement (e.g., ‘‘I put forth

my best effort in responding to this survey’’; Meade & Craig, 2012). However, the

usefulness of such items is still debated (Curran & Hauser, 2019), because their inclu-

sion can result in negative spillover effects by irritating participants or introducing

reactance.

The second group of indices relies on so-called paradata to gain further insights

into participants’ test-taking behavior (Couper, 2005). Paradata are additionally

recorded in computerized testing and include, among others, log data (Kroehne &

Goldhammer, 2018), response latencies (Leiner, 2019), keystrokes, and mouse clicks

(Kieslich & Henninger, 2017; Olson & Parkhurst, 2013). Major advantages of para-

data are that they can unobtrusively be assessed and are hard to fake. For example,

click counts and page timing have been used to flag bot-generated answers in a web-

based survey (Buchanan & Scofield, 2018). In the same vein, Steger, Schroeders, and

Wilhelm (2020) demonstrated in an experimental setting, comparing a proctored with

an unproctored knowledge assessment, the superiority of paradata such as response

times and focus shift of browser tabs in comparison to classical self-report scales

(e.g., honesty scales) in detecting cheaters. And recently, both responses and auxili-

ary response time information was used in a mixture hierarchical modeling approach

to detect aberrant responses (Wang et al., 2018; Wang & Xu, 2015).

Finally, several data-driven techniques, such as statistical outlier methods, consis-

tency analysis, or response pattern functions (see Table 1), are conducted after the

assessment to identify careless respondents. The detection and removal of statistical

outliers (i.e., data points that differs significantly from other observations) is one of

the most common methods of data cleaning. Multivariate approaches such as the

Mahalanobis distance evaluate the entire response pattern in a series of items (e.g., a

scale) to identify respondents with aberrant response behavior. Previous research

indicated high sensitivity and specificity of outlier detection for complete random

responses, but not for the midpoint response style or more sophisticated cheating

strategies (Maniaci & Rogge, 2014; Meade et al., 2017). Consistency analysis com-

prises a heterogeneous set of techniques (Curran, 2016; Maniaci & Rogge, 2014;

Meade & Craig, 2012), all relying on the basic notion that careless respondents pro-

duce responses that are internally inconsistent. For example, the odd–even consis-

tency is calculated by breaking each individual’s responses into even–odd items sets

for each unidimensional subscales. On the item level, the within-person correlations
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between highly correlated item pairs (irrespective of the content) are called psycho-

metric synonym/antonym scores. Although such consistency indices yield good, sen-

sitive detection of careless respondents (Curran, 2016), they are accompanied by a

variety of difficulties, for example, the necessity of relatively homogeneous, redun-

dant scales with similarly (or oppositely) formulated items. Last, response pattern

functions are used to detect uncommon patterns in parts or the complete response

vector of an individual in comparison to others.1 Some of them are easy to calculate

such as the longstring index (i.e., the number of consecutive items answered with the

same response alternative; Johnson, 2005) or the inter-item standard deviation, which

is also known as intraindividual response variability (IRV; i.e., standard deviation

across a response vector; Marjanovic et al., 2015). They are useful if the items can

be assigned to different constructs and some of them are negatively worded. More

complex procedures include the number of Guttman errors (Curran, 2016) or person-

fit statistics (Meijer, 1996), which have been devised for achievement data with a

dichotomous answer format, whereas there are only few procedures for polytomous

items (Emons, 2008; Tendeiro et al., 2016), especially in a multidimensional context

(Drasgow et al., 1985; Glas & Dagohoy, 2007). More specifically, person-fit statis-

tics have been used to identify participants with spuriously low or high test scores by

comparing participants’ actual responses with the expected responses (Karabatsos,

2003) and have been reported to detect both deliberate cheating (e.g., answer copy-

ing; Sotaridona & Meijer, 2002) and random responding (Niessen et al., 2016).

Stochastic Gradient Boosted Trees

Although machine learning methods have existed in computer science for decades,

they have only recently found wider application in psychology for the analysis of

large and complex data structures (Fan et al., 2014), including the prediction of per-

sonality from online social networking behavior (Kosinski et al., 2013) or the predic-

tion of physiological health (e.g., diabetes, hypertension) through personality nuances

(i.e., items; Seeboth & Mõttus, 2018). In psychological assessment, Zopluoglu (2019)

used an extreme gradient boosting algorithm, which is an efficient implementation of

gradient boosting (Friedman, 2002), to identify test-takers with preknowledge more

precisely compared with more traditional item exposure measures (area under the

receiver operating characteristic curve [AUROC] = .930). Thus, the algorithm might

help in classification problems such as separating careless from diligent respondents

in case the class labels are known. Besides the good predictive performance in similar

contexts (Zopluoglu, 2019), also the properties of the algorithm favor this method

over others (see Friedman, 2002).

In general, decision trees are a versatile and increasingly popular method for the

analysis of complex data structures with many variables and nonlinear relationships

that do not require the a priori specification of a functional form between an outcome

and its predictors (James et al., 2017). They sequentially partition the sample into

mutually exclusive classes and, thus, build a tree-like structure such as in Figure 1.
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Let yi denote the outcome for respondent i 2 1, :::, If g and xi = xi1, xi2, . . . , xiq

� �
a

Q-dimensional vector of predictors. Then, a set of decision rules and associated para-

meter values is identified that splits the data at each branch of the tree into two

smaller subsets according to a variable in x, thus, resulting in a tree that consists of J

end points (i.e., leaves). Given a tree structure T with its decision rules q xð Þ that

maps each observation i to one of the k leaves and a vector of scores on each leaf

g = g1, g2, . . . , gkf g the regression relationship between yi and xi can be formally

expressed as

ŷi = f xi; Tð Þ, ð1Þ

with f as a function describing the tree. The unknown tree parameters T are obtained

by minimizing a differentiable loss function L that measures the goodness of the pre-

diction for each data point:

T̂m = arg min
XN

i = 1

L yi, ŷið Þ: ð2Þ

As the present study uses a binary outcome that represents the regular versus careless

respondents group, a logistic loss function L is used

L yi, ŷið Þ= yi ln 1 + e�ŷi

� �
+ 1� yið Þ ln 1 + eŷi

� �
: ð3Þ

Single trees usually have a rather poor predictive performance, but can be com-

bined as ensembles for higher accuracies (Breiman, 2001). The gradient boosting

machine (GBM; Friedman, 2001) sequentially estimates M decision trees by choosing

Figure 1. Example of a decision tree with two nodes and three leaves.
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the optimal split points for xi. At the same time, the maximum number of leaves and

splits is limited to guarantee that each tree acts as a weak learner and does not domi-

nate the prediction. The M decision trees are added one at a time using a gradient des-

cent procedure. The loss function L is approximated by calculating its gradient with

respect to the predicted value of the ensemble and adding a new tree to the ensemble,

if the tree moves the loss in the direction of the prediction values. Following this

logic, the prediction ŷ at iteration m can be expressed as the prediction at the previous

iteration ŷ
m�1ð Þ

i and the prediction by the current tree fm xi; Tmð Þ, thus rewriting the

loss function at iteration m as

T̂m = arg min
XN

i = 1

L yi, ŷ
m�1ð Þ

i + fm xi; Tmð Þ
� �

: ð4Þ

The numerical optimization algorithm suggested by Friedman (2001) reformulates

Equation (4) using the negative gradient gim for the ith observation at iteration m and

proceeds in three steps. First, gim is estimated for each observation i as

gim = �
∂L(yi; f m�1ð Þ xi; T m�1ð Þ

� �
∂f xi; T m�1ð Þ
� �

" #
: ð5Þ

These pseudo-residuals reflect the potential reduction in loss and, in the second step,

are used as outcomes for estimating the parameters for the decision tree at iteration m

using Equation (5). Finally, the predictions are updated to derive the predicted values

at iteration m as

ŷm
i = ŷ

m�1ð Þ
i + l � fm xi; T̂ m

� �
, ð6Þ

with l as the gradient descent step size (i.e., learning or shrinkage parameter) that

controls the rate at which the algorithm updates the predictions. Friedman (2002)

showed that incorporating a boosting approach in the algorithm substantially

improves the predictive performance. Thus, stochastic gradient boosted trees do not

use the entire sample in Step 2 but are limited to a random subsample (without repla-

cements) of observations.

In stochastic gradient boosting, various tuning parameters need to be specified

that affect the performance of the algorithm. Because there is no convergence criter-

ion, the number of iterations M determines the amount of residual error. The maxi-

mum interaction depth determines the number of splits allowed in the tree, whereas

the leaf size indicates the minimum number of observations in a given leaf. Larger

interaction depths and smaller leaves sizes allow for more complex models, but also

lead to less stability and higher computational demands (Berk, 2017). In addition,

parameters regarding the minimum impurity decreasement for a split to be consid-

ered worthy, the learning rate l, and the number of trees are commonly optimized in

grid searches. Small values for the learning rate l not only slow down the learning,

requiring more iterations, but also improve the stability of the predictions.
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The Present Study

The main objective of the study is to evaluate different statistical techniques to iden-

tify participants who likely engaged in careless responding. Therefore, we implemen-

ted different post hoc statistics that have previously been described in the literature

and that serve as a benchmark (e.g., statistical outlier methods, consistency analyses,

and response pattern functions, see also Table 1). To identify careless respondents,

we also used a GBM (Friedman, 2002). In comparison to other machine learning

algorithms, the GBM has several advantages: First, it is a black box approach that

does not require the a priori specification of a functional relationship between the pre-

dictors and group membership (regular vs. careless respondents), which is advanta-

geous because the relationship is basically unknown. Such a model evaluation favors

prediction over explanation (Shmueli, 2010). Second, the GBM can capture complex

relationships (James et al., 2017) between the predictors (i.e., interactions) and

between predictors and outcome (i.e., nonlinear relations). Third, the GBM is eligible

to search for patterns in complex data structures with many heterogeneous variables,

including paradata such as response times. Paradata is considered more difficult to

counterfeit because the recording is done incidentally and clear assumptions of the

test-takers about the relation between paradata and careless responding are missing.

The evaluation of binary classifiers (e.g., specificity, sensitivity) is done for tradi-

tional detection mechanisms and gradient boosted trees with simulated data and with

empirical data of an experimental study.

Method

Study 1: Simulation Study
Data Generation. In comparison to real data where the prevalence of careless

responding is usually unknown (if not experimentally induced or otherwise con-

trolled for), Monte Carlo simulations offer the advantage that different response pat-

terns can be modeled reliably, so that the classification quality of the detection

mechanisms can be evaluated without measurement uncertainty. Although they allow

nuanced conclusions about the specific procedures, they can be criticized for their

idealized distributions of both regular and irregular response patterns. In general,

Monte Carlo simulations require a large number of specifications (see also previous

simulations by Credé, 2010; Meade & Craig, 2012; Niessen et al., 2016); we describe

the most important ones below and refer for detailed specifications to an Open

Science Framework (OSF) repository (Soderberg, 2018) in which we provide all data

and syntax files to foster transparency and reproducibility: https://osf.io/mct37.

We simulated nine data conditions in a 3 3 3 design manipulating the amount of

careless respondents in the overall sample (5%, 10%, 15%) and three types of

response styles (random, midpoint, and fixed pattern respondents; see also Meade &

Craig, 2012). We aligned the data generation of the simulation study as closely as

possible to the empirical data (which will be described as Study 2) to enable a proper

comparison between both studies. More precisely, we simulated valid responses to

38 Educational and Psychological Measurement 82(1)



60 ordinal variables with five response categories based on the empirical correlation

matrix and the response distribution from Study 2 (see OSF repository for the syntax)

using the R package genOrd (Version 1.4.0; Ferrari & Barbiero, 2012). With regard

to the sample size, we also closely mirrored the conditions of the empirical study

allowing for a direct comparison of the detection rates with simulated and empirical

data (for more information see Appendix A in the OSF repository).

In line with previous simulation studies,2 we differentiate three types of careless

respondents: (a) random respondents, (b) midpoint respondents, and (c) fixed pattern

respondents. In more detail, the answers of the random respondents were randomly

drawn from a uniform distribution across all response categories (i.e., 20%, 20%,

20%, 20%, 20%). Accordingly, the responses can be considered as completely ran-

dom, which is not necessarily a realistic condition. The midpoint response styles mir-

rors the response behavior of ‘‘persons that may stick primarily to the scale

midpoints over concerns of being identified via outlier analysis’’ (Meade & Craig,

2012, p. 448). In the simulation, the midpoint response style camouflaging inatten-

tive responses is characterized by successively higher probabilities for the middle

categories (i.e., 5%, 20%, 50%, 20%, 5% for the response categories). For simulating

responses of fixed pattern respondents, we generated a repeating sequence of random

numbers for each respondent (e.g., 1-2-3-1-2-3 . . . if the random numbers were 1

and 3).3 Modeling fixed response patterns with varying responses instead of repeat-

ing the same response across several consecutive items seems a more realistic setting

than constantly choosing the same response option and it should disfavor detection

via longstring or IRV. Sample sizes of simulated valid and careless respondents

match those of the empirical study.

Study 2: Empirical Study
Design and Participants. The web-based survey was administered through the survey

tool SoSci-Survey (Leiner, 2020) between February 2020 and April 2020. Participants

were recruited through social media, mailing lists, and a German online panel (Göritz

et al., 2019). Participants were randomly assigned to one of two conditions in a

between-subject design: regular responding or inattentive responding.4 The only dif-

ference between the two conditions was the instruction (see Appendix B in the OSF

repository). The first instruction for regular response behavior was a standard instruc-

tion as given in many measures of typical behavior emphasizing that participants

should select the answer that fits best after carefully considering each statement and

taking the time to think about the answer. The second instruction tried to emulate the

mind-set and response behavior of inattentive respondents (see also Niessen et al.,

2016) by focusing on a speedy and superficial processing. Thus, the respondents were

asked to quickly finish the survey without carefully reading the items. The instruction

also emphasized the fact that participation in the lottery would not be affected by the

actual responses. In addition to a data protection agreement, participants had to

answer a control question (‘‘What were your instructions?’’) after reading the instruc-

tion and prior to the actual questionnaire to ensure that the instruction was read and
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understood. After the questionnaire, participants were asked whether they followed

the instruction (yes/no) and had to answer the control question again.

Participants were included in the analyses if they had completed the questionnaire

and indicated that they had followed and correctly remembered the instruction (for a

flowchart with the dropout on the different stages see Figure S1 in the online reposi-

tory). In total, 605 respondents completed the test, either under the regular condition

(n = 361) or the careless responding condition (n = 244). Two thirds of the partici-

pants were female (66.9%, 32.4% male, and 0.7% diverse); the average age was 43.1

years (SD = 17.8). The sample of the regular and the careless condition was made up

as follows: 28.1% pupils/students, 2.8% manual workers, 39.3% employees, 5.0%

self-employed, 16.5% retired, and 8.3% others (information was available for n =

601). Almost all participants ( . 98%) stated that they understood German well or

very well on a 4-point scale.

Selection of Analysis Sample. The empirical sample consisted of 605 respondents with

361 in the regular condition and 244 in the careless condition. For the statistical anal-

yses, we split this sample into a test sample (30% or 180 respondents) and a training

sample (70% or 425 respondents) with the following boundary condition: Based on

the literature, we constrained the ratio of regular respondents to careless respondents

in the test sample to 9:1 (or 162:18 in absolute numbers). The remaining respondents

constituted the training sample with an almost balanced ratio (i.e., 199 regular and

226 careless respondents). A balanced ratio in the learning phase (i.e., training) and a

realistic ration in the evaluation phase (i.e., test) provide optimal conditions, both

from a learning and an evaluation perspective. The constrained random sampling

procedure was repeated 1,000 times to quantify the variability of the results. The

analysis sample derived from the empirical study corresponded to one of the condi-

tions of the simulation study because both have a testing sample of 180 respondents,

including 10% careless respondents (for more information see Appendix A in the

OSF repository).

Measures. In addition to basic demographic data (i.e., age, gender, profession, com-

mand of the German language), participants worked on the German version of the

HEXACO-60 (Ashton & Lee, 2009) measuring six personality traits: Honesty-

Humility (H), Emotionality (E), Extraversion (X), Agreeableness (A),

Conscientiousness (C), and Openness to Experience (O). Participants had to indicate

their agreement to the different statements (e.g., ‘‘I would be quite bored by a visit

to an art gallery’’) on 5-point scales (1 = strongly disagree, 2 = disagree, 3 = neutral,

4 = agree, 5 = strongly agree). Skipping items was not possible to prevent test-takers

from rushing through the questionnaire. We collected response times on the item

level, which were winsorized for extremely long response times (i.e., replacing out-

liers with the 95th percentile) and aggregated to parcels of 10 (in accordance with

the page layout) for subsequent analyses.
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Statistical Analyses for Studies 1 and 2

All traditional data-driven detection mechanisms (see also Table 1) were calculated

with the R package careless (Version 1.1.3; Yentes & Wilhelm, 2018), except for the

Zh statistic that was calculated using mirt (Version 1.32.1; Chalmers, 2012). In more

detail, the Mahalanobis distance was calculated (with a confidence level of 95%) on

data sets in which reversely formulated items were recoded. Psychometric antonyms

depict the within-person correlation of all negatively correlated item pairs, irrespec-

tive of the scale they belong to. A critical correlation between two items of r = 2.20

was considered sufficient given the typical low mean item-intercorrelation of the

HEXACO items of .05 [2.45; .63]. In contrast to semantic antonyms that take the

item content into account, psychometric antonyms are purely data-driven (see also

Curran, 2016). Even–odd consistency was computed as the within-person correlation

between the even and the odd items of a subscale; that is, information on the six-

dimensional structure of the HEXACO questionnaire was taken into account in the

calculation of the coefficient. At least six identical responses in a row (before reverse

coding negatively phrased items) were considered conspicuous for the longstring

index (see also Niessen et al., 2016). IRV can manifest on both sides of the distribu-

tion, either as low IRV scores reflecting straight lined responses (Dunn et al., 2018)

or as high IRV scores indicating highly random responses (Marjanovic et al., 2015).

Accordingly, IRV scores were calculated twice and the higher accuracy rates were

taken, which constitutes an overestimation, because in realistic settings such informed

adjustments cannot be made. The Zh person-fit statistic was based on a polytomous

multidimensional item response theory (IRT) model with the HEXACO traits as

dimensions (Drasgow et al., 1985).

We used the GBM algorithm of the R package gbm (Version 2.1.5; Greenwell

et al., 2019) as supervised machine learning algorithm and caret (Kuhn, 2008, 2020)

as interface for parallel modeling and prediction. To assess the correctness of the

model classification, we split the sample into a holdout (also called test) sample

(30%) to test model performance in an independent test sample and a training-

validation sample (70%) to train and tune the model. To minimize overfitting

(Yarkoni & Westfall, 2017), we used 10-fold cross-validation. The optimal settings

for the tuning parameter for each of 1,000 random training-validation samples were

identified via grid search with the following parameter settings: interaction depth of

2, 3, or 4, the minimum leaf size between 4 and 10, the shrinkage as a sequence

between .001 and .03 in small steps of .002, and trees between 250 and 800 in steps

of 50.

In the empirical study, the samples of the regular and careless respondents in the

training sample were almost equal in size, providing optimal learning conditions for

the algorithm. In the simulation study, however, we used the same prevalence of

careless respondents in the data generation process for both the training and the test

sample (5%, 10%, or 15% depending on the condition, see Appendix A for detailed

information on the sample size). It is a well-known fact that machine learning algo-

rithms that are trained on highly unbalanced data tend to bias the prediction in favor
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of the majority group leading to low sensitivity (e.g., Van Hulse et al., 2007). To

avoid this statistical artifact, we used up-sampling (e.g., Garcı́a et al., 2012), an often

applied technique, in which observations in the minority group (i.e., careless respon-

dents) are replicated to match the sample size of the majority group (i.e., regular

respondents). Please note the test sample is unaffected by the up-sampling. The anal-

yses were repeated 1,000 times for different random samples generated in the simu-

lation study and randomly drawn samples in the empirical study (training vs. testing

sample).

To evaluate the binary classification into careless respondents (CR) and regular

respondents (RR), we report five performance metrics (for an overview see Tharwat,

2018) based on the number of correctly identified CR (true positives, TP), incorrectly

identified CR (false positives, FP), correctly identified RR (true negatives, TN), and

incorrectly identified RR (false negatives, FN): (a) sensitivity or true positive rate or

recall (= TP/(TP + FN)), (b) specificity or true negative rate (= TN/(FP + TN)), (c)

precision or positive predictive value (= TP/(TP + FP)), (d) accuracy (= (TP + TN)/

(P + N)), and (e) the balanced accuracy, which is the mean of sensitivity and specifi-

city. These indices were calculated in the test sample for each of the 1,000 iterations

of the analyses.

Results

Study 1: Simulation Study

In the simulation study, we considered a 3 3 3 design, varying the amount of care-

less respondents in the overall sample (5%, 10%, 15%) and considering three types

of response styles (random, midpoint, fixed pattern respondents). To reduce the com-

plexity of the results, we only elaborate the results of the 10% condition because they

were similar to the results of the other conditions (see Tables S1 and S2 in the online

repository). Moreover, the size of the test sample (n = 180) in this condition is identi-

cal to the empirical data, which enables a comparison to the empirical data. Also,

most frequently, prevalence rates between 10% and 15% are reported in the literature

(Kurtz & Parrish, 2001; Meade & Craig, 2012). Table 2 summarizes the means and

standard deviations for different performance metrics across 1,000 iterations for the

three types of careless responding. The main findings of the simulation study are as

follows: First, several detection methods performed well with respect to specificity;

that is, regular respondents were in most cases correctly classified. In contrast, the

rate of correctly identified careless respondents (i.e., sensitivity) is often low, which

is in line with previous results (e.g., Niessen et al., 2016). Second, traditional detec-

tion mechanisms such as the Mahalanobis distance and the polytomous Zh statistics

performed excellent in terms of specificity and sensitivity for random respondents,

whereas the sensitivity was low for the midpoint and pattern respondents. Third,

although for the midpoint and pattern respondents the specificity for the traditional

detection mechanisms (with the exception of the Zh statistic) can be considered good,

only the IRV yielded acceptable values for sensitivity. Fourth, the GBM performed
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excellent with balanced accuracies of .86 for random respondents, .94 for midpoint

respondents, and .95 for pattern respondents. Also, the precision was high, indicating

that only a small fraction of the flagged respondents were false positives (see Table

2). Please note that the high classification accuracy of the gradient boosted trees indi-

cate that the up-sampling procedure mostly compensated for potential adverse effect

of unbalanced groups in the training-validation sample. As the number of careless

respondents in the training data set increases, the performance only slightly improves

(see Tables S1 and S2 in the online repository for the 5% and 15% careless respon-

dents condition).

Study 2: Empirical Study

To compare the detection mechanisms for the empirical study, we first present the

different performance metrics (see Table 3). To illustrate the variability of the empiri-

cal results, we drew 1,000 test samples from the empirical data (i.e., 30% of the over-

all sample) that comprises 90% regular and 10% careless respondents (i.e., 162 and

18 respondents, respectively, in absolute numbers) and report means and standard

deviations of the respective classification indices. In addition to a GBM that relied on

the response vectors (GBMRes), we included two models that used response times

only (GBMRT) and a combination of both information (GBMRes + RT), respectively.

Since the sample size of the holdout sample is identical to the setup of the simulation

study, the results can be compared with the simulation results reported above. In com-

parison to the simulated conditions, all detection mechanisms performed worse in the

empirical study, demonstrating that it is much harder to flag aberrant responses. For

the traditional detection methods, the picture that has already emerged for the mid-

point and the pattern respondents in the simulation study was replicated with good

values for specificity, but low values for sensitivity. Importantly, sensitivity and spe-

cificity were only mediocre for the machine learning approach: The average false

positive rate (= 1 2 specificity) was .29 for the most complex model and the average

miss rate (or false negative rate = 1 2 sensitivity) was .40. The precision (or positive

predictive value) as the proportion of correctly identified careless respondents out of

all flagged respondents is only .19, which means that the flagging of participants is

false in 81% of the cases.

Sensitivity, as the proportion of careless respondents that are correctly identified,

and specificity, which denotes the proportion of regular respondents that are correctly

identified, are mutually dependent—the increase of one leads to a reduction of the

other (i.e., sensitivity-specificity trade-off). In the present context, we used an opti-

mization function for the GBM algorithm that took into account both performance

metrics equally. Depending on the research question and the consequences of mis-

classification other priorities might be better suited. Thus, researchers should ask

whether Type I and Type II errors are equally unfavorable for their research or appli-

cation, a question that can only be answered depending on the consequences of

incorrect classifications. Improperly flagging responses as careless (Type I error)
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may unduly reduce the sample size, increase the survey costs, and bias the results,

while not detecting real careless respondents (Type II error) might also bias and

invalidate test results (also known as the MTurk quality crisis, e.g., Kennedy et al.,

2020). In our analysis, we used a negative logistic loss function for the gradient boost

algorithm to make the model more sensitive to the class of careless respondents,

resulting in higher balanced accuracy rates (i.e., arithmetic mean of sensitivity and

specificity) in comparison to the traditional detection mechanisms. Adopting a more

conservative approach, that is, raising the bar to flag potential careless respondents,

the accuracy or the receiver operating characteristic curve metric would be a better

metric to optimize.

In addition to the sensitivity and specificity, we present the balanced accuracy—

that is, the arithmetic mean of sensitivity and specificity—as a compromise between

both performance measures of a binary classification test (see Figure 2). The main

findings concerning balanced accuracy can be summarized as follows. First, both the

traditional detection mechanisms and the machine learning algorithm performed con-

siderably worse in the realistic setting versus the simulated data condition. This is

particularly evident in the precision, which in the empirical study reached only about

one fourth of the values from the simulation study. Second, the GBM achieved a

slightly better trade-off between sensitivity and specificity. The balanced accuracy

was best if the responses and the (aggregate) response times were included in the

model. It should be mentioned that adding further predictors such as the number of

response option changes, or the traditional detection measures did not lead to a sub-

stantial increment in the prediction quality in our study. The values had a large varia-

tion; that is, the performance metrics varied considerably depending on the specific

sample. This is most likely due to the small sample size (for machine learning stan-

dards). It can also be taken as evidence that careless response processes under real-

world conditions are much more heterogeneous than artificial ones (see also Denison

& Wiernik, 2020) and, therefore, require a larger learning pool.

Discussion

Comparing the results of the simulation and the empirical study showed substantial

differences in almost all performance measures for the detection of careless respon-

dents (cf., Hong et al., 2020; Meade & Craig, 2012; Niessen et al., 2016). Whereas

the simulation study highlighted substantial advantages of the studied machine learn-

ing algorithm, respective benefits were more modest in the empirical application.

One reason for this discrepancy might be that some ‘‘regular respondents’’ in the

empirical study might have (at least in part) responded carelessly, even though they

claimed to adhere to the instructions. In turn, there also might have been ‘‘careless

respondents’’ that actually paid attention out of curiosity, reactance, or misunder-

standing. Both effects most likely restricted the maximum obtainable sensitivity in

the empirical study. Thus, the best specificity value found was .71 for the GBM,

which might constitute an upper bound that can be expected in applied settings.
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Figure 2. Specificity, sensitivity, and balanced accuracy across detection mechanisms. Maha.
= Mahalanobis distance; Ant. = psychometric antonyms; EvenOdd = even–odd consistency;
Long. = Longstring Index; IRV = intraindividual response variability; Zh = polytomous IRT
person-fit statistic; GBM = gradient boosting machine; Res = responses; RT = response times.
Left side: The boxplot reflects the interquartile range, the solid line represents the median,
and the whiskers represent minimum/maximum values within 1.5 times the interquartile
range. Right side: Jittered point plot of 100 randomly drawn values. IRT = item response
theory.
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Another explanation for the observed discrepancy between the two studies might be

that the simulated types of careless responding are inferior characterizations of actual

careless responding observed in the real world. For example, humans are usually not

capable of generating completely random answers as assumed in many previous

simulation studies; a circumstance that is incidentally also exploited in the detection

of malingering (Orthey et al., 2019). Apparently, human’s response behavior is much

more erratic than what is assumed in rather straightforward, pattern-like responses of

simulation studies. A somewhat disappointing conclusion, therefore, is that findings

of simulation studies do not directly translate into an ecologically valid context.

The present study falls in line with a series of critical voices on the hype about

machine learning algorithms in fields such as personality science (e.g., Stachl et al.,

2020) or clinical research (Cearns et al., 2019). In psychology, data quality and struc-

ture are frequently not comparable to computer sciences. We often rely on small sam-

ple sizes, which require special attention to avoid overfitting (Vabalas et al., 2019).

Moreover, typical indicators in psychological research such as questionnaire or test

data are subject to measurement errors, which might obscure the true relationship

underlying the data (Jacobucci & Grimm, 2020). Careless (and also regular) respond-

ing might also manifest in many idiosyncratic ways that simply do not follow a clear

predictable pattern. All these circumstances might account for the sobering results

regarding the usefulness of machine learning in psychology.

The Potential of Machine Learning Algorithms

Gradient boosted trees are effective in cases where patterns in relation to a labeled

outcome can be derived. In the simulation study, the GBM could ‘‘learn’’ not only

because the pattern of careless (and regular) responding was rule-based and separable

from each other but also because the outcome was provided. This knowledge of the

outcome is used to optimally set up the predictive model. In contrast, traditional

detection mechanisms are unsupervised algorithms that operate without such infor-

mation, which makes it an almost unfair comparison. However, in real settings, infor-

mation on the extent of regular responding is not given and one has to rely on other

(partially unreliable) information such as asking participants if they answered dili-

gently. One advantage of the GBM is that they can easily deal with plenty of features

and split them optimally. In case of response times, GBM can flexibly handle this

additional source of information, whereas traditional detection mechanisms have to

work with a predefined cutoff. The importance of response times in the context of

detecting aberrant responses has also been stressed elsewhere (e.g., Leiner, 2019).

Usually, detection mechanisms based on response times focus on extremely rapid

responses (e.g., 2 seconds/item; Huang et al., 2012; Wise & Kong, 2005). However,

a speedy response is not necessarily synonymous with careless responding. In turn—

although the instruction of the careless responding condition specifically requested to

get through the questionnaire ‘‘as quickly as possible’’—it is also conceivable that a

respondent is unusually slow (see also Niessen et al., 2016), for example, if they are
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distracted. In principle, the GBM algorithm can detect either very fast or extremely

slow respondents. In the present study, however, we observed a huge overlap of the

response time distributions across conditions and larger differences at the lower tail

of the distribution (see Figure S2 in the online repository).

Arguably, there is still potential to improve the classification accuracy of the

GBM since even the ‘‘best’’ model is not optimal for practical purposes. For exam-

ple, the predication model could incorporate additional information such as scales

measuring test-taking motivation, conscientiousness, or diligence as additional pre-

dictors. It might also be worthwhile to use bogus items, instructed response items, or

even paradata that are much harder to fake (e.g., Buchanan & Scofield, 2018; Steger,

Schroeders, & Wilhelm, 2020). One promising candidate for such a piece of infor-

mation would be the item number indicating the progress in the completion of the

questionnaire. Careless responding is not dichotomous, rather insufficient effort can

take place sooner or later depending on the commitment or fatigue of the test-taker

and the length of the questionnaire (Gibson & Bowling, 2020). Costs (e.g., time or

cognitive effort) and benefits (e.g., financial gratification or intrinsic motivation) are

set off against each other to evaluate the willingness to further participate at a spe-

cific point of time. That is, not only the willingness to answer superficially increases

but also the probability to abort the questionnaire (Bowling et al., 2020). Thus, it

seems plausible to consider the phenomena of attrition and careless responding in

tandem (Meade et al., 2017). Yet even in a complete data set, items at the beginning

of the questionnaire might be more decisive for distinguishing careless responding

than those items at the end, because it is likely that the motivation of even engaged

participants decreases till the end of the questionnaire (see also Wise & Kong, 2005).

Disadvantages of Available Detection Indices

A serious drawback of several traditional detection indices (e.g., Longstring Index, psy-

chometric antonyms) is that the cutoffs are usually set manually and data-driven without

controlling for the risk of overfitting, which is why recommendations for cutoffs vary in

the literature depending on the data set used to derive them (e.g., Niessen et al., 2016).

Nonetheless, traditional indicators to detect careless responding—whether statistical out-

lier methods, consistency analyses, and response pattern functions—have the advantage

that they can be applied with minimal prerequisites to new questionnaires. In contrast,

supervised machine learning algorithms such as gradient boosted trees require labeled

data sets, need an extensive training phase, and the prediction models are bound to a

specific set of items. Generalizations to other data sets, samples, and situations are not

possible, because every examination is highly specific in terms of items and persons.

These are major drawbacks. In principle, it would be possible to follow the design we

outlined in the study—that is, implement an experimental prestudy to build a ‘‘detection

model’’ and to subsequently clean the data of the main study. However, given the pres-

ent set of results, we are skeptical that such an approach will provide satisfying results
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because careless responding in real life is apparently a lot harder to detect than obvious

misconduct.

We would also like to caution that decisions of traditional detection approaches,

which test-takers respond carelessly, are based not only on the gathered data but also

on theoretical assumptions of the data generation process itself. Model-based

approaches rely on the assumption that normality can be captured sufficiently well

by a given model, so that non-matching observations are considered outliers. For

example, in the even–odd consistency analyses, participants whose answers to simi-

lar questions are contradictory or inconsistent are more conspicuous. However, such

a categorization involves certain risks, since it decides a priori on the correctness of

data, and flags data that are not in line with a certain model or deviate the most.

However, these model assumptions can be erroneous themselves, bearing the risk of

shaping the data until it fits the model assumption, which might render the cure

worse than the disease. Also, using machine learning algorithms comes at a cost

because they are more data-driven and are considered black box approaches. As an

outlook for future research, it seems promising to reunite the approaches of explana-

tion and prediction (Yarkoni & Westfall, 2017) by enriching machine learning with

assumptions about the process (and ultimately the causes) of careless responding

(e.g., the risk to engage in careless responding should increase with test length and

cognitive demand, which could be accounted for in the modeling procedure).

Authors’ Note

We confirm that the work conforms to Standard 8 of the American Psychological Association’s

Ethical Principles of Psychologists and Code of Conduct.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,

and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article.

ORCID iDs

Ulrich Schroeders https://orcid.org/0000-0002-5225-1122

Timo Gnambs https://orcid.org/0000-0002-6984-1276

Supplemental Material

Supplemental material for this article is available online at https://osf.io/mct37.

50 Educational and Psychological Measurement 82(1)



Notes

1. The differences between the detection measures that belong to the group of consistency

analysis versus the response pattern functions, thus, is the point of comparison: In the for-

mer, it is mainly on the individual response vector, while in the latter, it also takes into

account the responses of the sample. Please note that the distinction is not clear-cut and

some mechanisms can be assigned differently (e.g., psychometric antonyms).

2. The random respondents correspond to the condition of ‘‘uniformly random careless data’’

in Meade and Craig (2012), whereas midpoint respondents correspond to the condition of

‘‘normally distributed random careless data.’’ The fixed pattern respondents were not pre-

viously simulated.

3. We used the R code rep(sample.int(5,1):sample.int(5,1), length.out=60) to generate the

sequence.

4. The design also included a third condition that instructed respondents to deliberately

respond carelessly with the intention not to be discovered. This induced response style

resembles faking behavior (Geiger et al., 2018), but without impression management.

Instead, test-takers were instructed to complete the questionnaire quickly without being

recognized as an inattentive respondent. To streamline the present article, this condition

has not been examined further.

References

Arias, V. B., Garrido, L. E., Jenaro, C., Martı́nez-Molina, A., & Arias, B. (2020). A little

garbage in, lots of garbage out: Assessing the impact of careless responding in personality

survey data. Behavior Research Methods. Advance online publication. https://doi.org/

10.3758/s13428-020-01401-8

Ashton, M., & Lee, K. (2009). The HEXACO-60: A short measure of the major dimensions of

personality. Journal of Personality Assessment, 91(4), 340-345. https://doi.org/10

.1080/00223890902935878

Berk, R. A. (2017). Statistical learning from a regression perspective. Springer.

Berry, D. T. R., Wetter, M. W., Baer, R. A., Larsen, L., Clark, C., & Monroe, K. (1992).

MMPI-2 random responding indices: Validation using a self-report methodology.

Psychological Assessment, 4(3), 340-345. https://doi.org/10.1037/1040-3590.4.3.340

Bowling, N. A., Gibson, A. M., Houpt, J. W., & Brower, C. K. (2020). Will the questions ever

end? Person-level increases in careless responding during questionnaire completion.

Organizational Research Methods. Advance online publication. https://doi.org/10.1177/

1094428120947794

Bowling, N. A., & Huang, J. L. (2018). Your attention please! Toward a better understanding

of research participant carelessness. Applied Psychology, 67(2), 227-230. https://doi

.org/10.1111/apps.12143

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi:10.1023/A:

1010933404324

Buchanan, E. M., & Scofield, J. E. (2018). Methods to detect low quality data and its

implication for psychological research. Behavior Research Methods, 50(6), 2586-2596.

https://doi.org/10.3758/s13428-018-1035-6

Cearns, M., Hahn, T., & Baune, B. T. (2019). Recommendations and future directions for

supervised machine learning in psychiatry. Translational Psychiatry, 9, Article 271. https://

doi.org/10.1038/s41398-019-0607-2

Schroeders et al. 51



Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R

environment. Journal of Statistical Software, 48(6), 1-29. https://doi.org/10.18637/

jss.v048.i06

Couper, M. P. (2005). Technology trends in survey data collection. Social Science Computer

Review, 23(4), 486-501. https://doi.org/10.1177/0894439305278972
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