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Abstract 

Increasing nonresponse rates are a pressing issue for many longitudinal panel studies. 

Respondents frequently either refuse participation in single survey waves (temporary dropout) 

or discontinue participation altogether (permanent dropout). Contemporary statistical methods 

that are used to elucidate predictors of survey nonresponse are typically limited to small 

variable sets and ignore complex interaction patterns. The innovative approach of Bayesian 

additive regression trees (BART) is an elegant way to overcome these limitations because it 

does not specify a parametric form for the relationship between the outcome and its 

predictors. We present a BART event history analysis that allows identifying predictors for 

different types of nonresponse to anticipate response rates for upcoming survey waves. We 

apply our novel method to data from the German National Educational Panel study including 

N = 4,559 students in grade 5 that observed nonresponse rates of up to 36% across five waves. 

A cross-validation and comparison with logistic regression models with LASSO (least 

absolute shrinkage and selection operator) penalization underline the advantages of the 

approach. Our results highlight the potential of Bayesian discrete time event modeling for the 

long-term projection of panel stability across multiple survey waves. Finally, potential 

applications of this approach for operational use in survey management are outlined. 

Keywords: panel study, dropout, nonresponse, regression tree, Bayes 
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Analyzing Nonresponse in Longitudinal Surveys Using Bayesian Additive Regression Trees: 

A Nonparametric Event History Analysis 

Unit nonresponse presents an increasing obstacle for longitudinal social surveys and 

educational large-scale assessments that threatens the representativeness of samples and 

compromises the validity of conclusions drawn from these data (Beullens, Loosveldt, 

Vandenplas, & Stoop, 2018; Kreuter, 2013; Williams & Brick, 2017). Specifically, biased 

population estimates might result from incomplete data if observed responses differ 

systematically from responses that could have been theoretically obtained from 

nonresponding units (e.g., Heffetz & Reeves, 2019; Trappmann, Gramlich, & Mosthaf, 2015). 

Therefore, longitudinal panel studies strive to prevent nonresponse from the outset and delay 

panel mortality (i.e., withdrawal of participants) as long as possible. For this purpose, it is 

important to identify already at an early stage participants with a high nonresponse propensity 

in order to implement appropriate intervention strategies (e.g., providing more attractive 

incentives; see Felderer, Müller, Kreuter, & Winter, 2018; McGovern, Canning, & 

Bärnighausen, 2018). The primary objective of this paper is the introduction of a novel 

approach for the prediction of future participation behavior in longitudinal surveys that allow 

implementing countermeasures to prevent nonresponse. So far, most nonresponse research 

takes a rather short-term perspective and focuses on wave-to-wave participation rates, that is, 

the share of nonresponders in a given wave as compared to the sample in the previous wave 

(e.g., Durrant & Steele, 2009; Roßmann & Gummer, 2016; West, 2013). As a consequence, 

most findings are rather limited in scope and do not allow for long-term projections of panel 

stability. Moreover, statistical methods commonly used for the analysis of nonresponse (e.g., 

logistic regression) are ill-equipped to handle large and complex predictor sets (see, for 

example, van Smeden et al., 2018) that are typically available in longitudinal panel studies. In 

practice, survey researchers frequently limit their analyses to variable main effects (or, at the 

most, bivariate interactions) while ignoring higher-order interaction and nonlinear effect 
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patterns, thus, sacrificing a potential gain in precision for statistical efficiency. Therefore, this 

study proposes a tree-based method that is suitable for handling complex variable sets for 

analyzing panel attrition (Chipman, George, & McCulloch, 2010) and using nonparametric 

event history analyses to examine nonresponse across multiple survey waves. Because the 

relationship between predictors and outcome does not assume a parametric form (as is the 

case with, for example, linear regression), the adopted machine learning approach places few 

restrictions on potential effect patterns (e.g., nonlinearity, interactions). As a result, it allows 

for more valid inferences on important predictors of participation propensities in social 

surveys. We applied our method to data from the longitudinal German National Educational 

Study (Blossfeld, Roßbach, & von Maurice, 2011) to predict participation rates across five 

survey waves and identify relevant predictors for different types of nonresponse. 

The Problem of Nonresponse in Longitudinal Surveys 

Panel studies require repeated participation of sampling units across long periods of 

time. However, many respondents are reluctant to invest the sustained effort required for this 

task and refuse follow-up invitations to surveys (e.g., Kleinert, Christoph, & Ruland, 2019; 

Williams & Brick, 2017). Unit nonresponse resulting from a refusal to participate in a study is 

commonly referred to as dropout, breakoff, or attrition (Brüderl & Trappmann, 2017; 

Peytchev, 2009) and represents an increasing problem in social science research. For example, 

Zinn and Gnambs (2018) observed a dropout rate in a longitudinal German large-scale 

assessment across four years of up to 61%. Continually decreasing response rates in social 

surveys seem to be a global trend. For recent rounds of the European Social Survey the 

decline in response rates across 36 countries was around 1 to 1.5 percentage points from one 

wave to another, resulting in overall response rates as low as 35% for some countries despite 

extensive fieldwork efforts (Beullens et al., 2018). More importantly, sampling units 

declining survey participation frequently exhibit systematically different characteristics than 

participants (e.g., Heffetz & Reeves, 2019; Trappmann et al., 2015; Voorpostel & Lipps, 
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2011). For example, specific life events such as changes in employment status or household 

composition tend to increase nonresponse in longitudinal social surveys (Trappmann et al., 

2015); in contrast, continuous respondents across multiple survey waves tend to report fewer 

life changes (Voorpostel & Lipps, 2011). Thus, nonresponse can seriously undermine the 

validity of representative social surveys. 

Generally, unit nonresponse refers to the loss of sampling units drawn from the 

population. In longitudinal studies, unit nonresponse can be further distinguished into two 

types (Müller & Castiglioni, 2017): respondents refusing participation in a given wave but 

participating in upcoming waves of the panel study (temporary dropout) and respondents 

refusing participation in a given wave and any upcoming waves (permanent dropout). Recent 

studies showed that temporary dropout cases systematically differ from continuous 

respondents and more strongly resemble permanent dropout cases (Michaud, Kapteyn, Smith, 

& van Soest, 2011; Watson & Wooden, 2014). Therefore, preventing nonresponds in the first 

place seems to be a way of improving sample variability and mitigating the biasing effect of 

permanent dropout in panel studies (Müller & Castiglioni, 2017). This requires identifying 

candidate nonresponders that might be persuaded to reengage with a panel study in the future 

and developing respective incentive strategies for hard-to-survey respondents (cf. Adhikari & 

Bryant, 2018). Ideally, the dropout propensity of sampling units in a panel study is even 

identified before unit nonresponse actually occurred. Then, respective counterstrategies can 

be devised that prevent dropout (see Earp, Mitchell, McCarthy, & Kreuter, 2012). Moreover, 

identifying participation trajectories already early on in a panel study can help planning 

timelines for sample refreshments and evaluating budgetary requirements. However, this 

requires accurate prediction models that can estimate the likelihood of temporary and 

permanent dropout across multiple waves of a longitudinal study. 
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Regression Trees for Analyzing Survey Participation 

Regression relationships in survey data are often complex including many covariates, 

nonlinear effects, and higher-order interactions. Machine learning methodologies offer 

flexible modeling techniques that can accommodate these complex data structures and allow 

studying survey participation without requiring the a priori specification of a functional form 

between nonresponse and its predictors. Contemporary machine learning methods (see Kuhn 

& Johnson, 2013, for an overview) are also particularly well-equipped to handle large 

predictor sets that are typically available in social surveys (e.g., respondent characteristics, 

survey responses, paradata). Thus, recent reviews highlighted the potential of machine 

learning techniques also for survey research (e.g., Buskirk, Kirchner, Eck, & Signorino, 2018; 

Kern, Klausch, & Kreuter, 2019; Toth & Phipps, 2014), for example, for adaptive data 

collection (e.g., identifying additional cases during field time), nonresponse adjustments (e.g., 

correcting for unequal participation probabilities), and nonresponse analyses (e.g., describing 

dropout patterns). Particularly, tree-based methods have been shown to outperform commonly 

used prediction techniques such as logistic regression (Buskirk & Kolenikov, 2015; Phipps & 

Toth, 2012). Therefore, the next sections introduce the idea of classification and regression 

trees (CART; Breiman, Friedman, Olshen, & Stone, 1984) and their extension to Bayesian 

additive regression trees (BART; Chipman et al., 2010). Finally, we show how BART can be 

used to examine different types of nonresponse using event history modelling. 

The Basics of Regression Trees 

Tree-based methods such as CART (Breiman et al., 1984) employ a recursive 

partitioning algorithm to build a tree structure by splitting a sample into mutually exclusive 

classes (so-called terminal nodes) according to the predictor space (see Figure 1). Let the 

random variable Y with the realization yi for respondent  1,...,i I  represent a binary 

outcome indicating survey (non)participation and xi a Q dimensional vector of predictors. 

Starting with the entire sample, the algorithm minimizes the loss function used for model 
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evaluation (e.g., the entropy or the mean squared error) and searches for a decision rule that 

results in the best split leading to the two most homogenous classes with respect to Y. The 

decision rule is a binary split of a single predictor s of all available predictors X, s X , 

and a cut point c such that {s < c} versus {s ≥ c} for a continuous s or {s = c} versus {s ≠ c} 

for a categorical s. After the decision rule is found, the resulting classes are themselves 

considered for splitting. This process is repeated until a prespecified termination criterion 

(e.g., minimum number of cases per node) is reached. Finally, the tree consists of B terminal 

nodes and associated parameter values  1,..., BM    that can be used for predicting the 

outcome for new data. M represents the E(Y | x) in each terminal node, that is, the modal 

category of Y. Thus, given a tree structure T with its nodes and decision rules and the 

parameter values M for each terminal node the regression relationship between yi and xi can 

be formally expressed as 

   ( ) ( )2; ,  where ~ 0,i i i iy g x T M N  = + ,    (1) 

with g as a function describing the tree. Because g(xi; T, M) in (1) returns the b M   

assigned to xi, E(Y | xi) corresponds to the terminal node parameter μb given by g(xi; T, M). 

In contrast to single tree-based methods, ensemble methods combine multiple trees 

and, thus, tend to achieve better predictive performance. A particularly versatile development 

in this area are Bayesian additive regression trees (BART; Chipman et al., 2010). 

Bayesian Additive Regression Trees 

The BART model is a sum-of-trees approach with regularization priors on the model 

parameters. In contrast to CART models, multiple trees are combined in an additive fashion 

as 

   ( ) ( )2

1
; ,  where ~ 0,

m

i i l l i il
y g x T M N  

=
= + .   (2) 
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Under (2), E(Y | xi) is the sum of all parameter values μbl for the terminal nodes assigned to xi 

by g(xi; Tl, Ml). Although the number of trees m can be specified as an unknown parameter in 

the Bayesian implementation of (2), the computational costs are high and do not seem to offer 

a substantial gain in prediction accuracy as compared to selecting a default value of 200 

(Chipman et al., 2010). Typically, the predictive performance of BART strongly increases 

among smaller numbers of trees and then levels off. 

Assuming prior independence, the model uses priors for three components: a prior 

p(Tl) for the tree structure, a prior p(μbl | Tl) for the parameter values in the terminal nodes 

given the tree structure, and a prior p(σ) for the variance. The regularization prior p(Tl) 

determines the depth  )1,d    of tree l and assigns prior probabilities of ( )1 d



−

+  with 

( )0,1   and  )0,    to each node that it is a non-terminal node and can be used for 

another split. Chipman and colleagues (2010) recommend using α = 0.95 and β = 2 as default 

values which give the largest probabilities to smaller trees of depth d = 2 or 3 (although larger 

trees with many terminal nodes can also emerge given the data). The prior p(μbl | Tl) for the 

terminal node values is  

   ( ) ( )2~ 0,  where bl N e k m    =     (3) 

which assigns lower probabilities to extreme values and effectively shrinks the μbl toward 

zero. In doing so, each individual tree in (2) explains only a small portion of the outcome and 

can also be interpreted as a ‘weak learner’. For binary outcomes the recommended choice for 

e is 3.0, whereas a value of 2 has been suggested for k which yields a 95% prior probability 

that E(Y, | x) falls between the observed minimum and maximum values of an appropriately 

rescaled Y (Chipman et al., 2010). Finally, an inverse chi-square distribution can be used as a 

prior for the variance σ2 (see again, Chipman et al., 2010). However, as our discrete-time 

event models (see below) use a probit regression with latent variables and unit variance (σ2 = 

1), for our purposes no further prior specification is required.  
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The BART model is estimated using a Gibbs sampler with a Bayesian backfitting 

Marko Chain Monte Carlo (MCMC) algorithm embedded (Hastie & Tibshirani, 2000). That 

is, upon each sequence of draws from the full conditional distributions of the unknown 

parameters Tl, Ml, and σ the partial residuals are derived as  

    ( ); ,l k k

k l

R y g x T M


 −      (4) 

on a fit that excludes the lth tree. In each step of the Gibbs sampler (referring to the 

conditional density of the parameters Tl and Ml of the tree l), these are then used as the 

conditional variables instead of all the trees Tk and parameter sets Mk that exclude Tl and Ml. 

The conditional tree structure (Tl | Rl, σ) is drawn using a Metropolis-Hastings step (Chipman, 

George, & McCulloch, 1998), whereas the conditional terminal node values (Ml | Tl, Rl, σ) are 

drawn from a normal distribution. Finally, conditional on all Tl and Ml, the residual standard 

deviation (σ | T1, …, Tm, M1, …, Mm) is drawn from an inverse gamma distribution. In our 

case, the last step is dropped since we use a probit specification to fit discrete time event 

history models (see below). This backfitting algorithm generates a sequence of draws of (T1, 

M1) … (Tm, Mm) that converge to the posterior distribution of the true model 

    ( )
1

; , |
m

l l

l

p g T M Y
=

 
 

 
 .     (5) 

The posterior distribution can be used to calculate Bayesian inferential statistics such as 

posterior means or medians and respective credibility intervals. Further information on the 

estimation algorithm is given in Chipman et al. (2010) and Kapelner and Bleich (2016). 

The predictor importance in tree-based methods is evaluated by focusing on the subset 

of variables that was used for splitting and growing the trees. Various backward stepwise 

selection procedures have been suggested that quantify, for example, the reduction in mean 

square error (Díaz-Uriarte & de Andrés, 2006) or posterior predictive uncertainty within 

nodes (Gramacy, Taddy, & Wild, 2013) to rank predictors by importance. In BART, Chipman 
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and colleagues (2010) suggested the variable inclusion proportion pvi, that is, the posterior 

mean of the relative number of times a given variable is used in a tree decision rule. Because 

predictors with large pvi are likely to be important drivers of the outcome, pvi can be used to 

rank the predictors in x in terms of importance. Note that the pvi are indicators of relative 

importance and do not reflect whether any given covariate has a “real effect” (Bleich, 

Kapelner, George, & Jensen, 2014). In situations where all variables are unrelated to Y, 

BART would select covariates randomly to grow the trees. Then, the variable inclusion 

proportion for each variable would be pvi = 1 / Q for all  1,...,x Q . Thus, to be considered a 

relevant predictor pvi should exceed this threshold. 

Event History Modeling using BART 

Event history modeling aims at the analysis of longitudinal data on the occurrence and 

timing of events. . As with other regression methods, it models the likelihood that a specific 

event occurs at a specific point in time dependent on various predictors (see Keiding, 2014, 

and Mills, 2011, for an introduction). In longitudinal surveys across multiple waves two types 

of nonresponse can be observed (i.e., temporary and permanent dropout; cf. Müller & 

Castiglioni, 2017) that can be modeled using discrete time events in BART. Sparapani, 

Logan, McCulloch, and Laud (2016) initially proposed a BART for survival analyses to 

examine the risk of experiencing a single event (e.g., dropout versus participation). This 

approach can easily be extended to also examine competing risks for different types of events 

(Sparapani, Logan, McCulloch, & Laud, 2019), as long as an independence between 

competing risks is assumed (as is commonly done in event history modeling; Mills, 2011). In 

doing so, this model fits to the specific structure of our problem (i.e., temporary dropout 

versus permanent dropout versus participation). 

Let tj represent the distinct event times (i.e., the T survey waves), ni the number of 

time points observed for respondent i, and  0,1,...,ij K   the censoring indicator for 
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respondent i at time tj (with  0, 1j T − ) that distinguishes non-events (δij = 0) from events 

(δij > 0). In our application, non-events correspond to survey participation, whereas K equals 2 

and reflects the two types of nonresponse (i.e., temporary and permanent dropout). The 

response variable Z is a stacked vector given by ( )ijk ijz I k= =  with  0,1,...,k K  and 

 1,..., ij n  (see Figure 2). The probability of observing event k for respondent i between tj-1 

and tj conditional the covariates wij is modeled using a multinomial probit link as 

( ) ( )( )1
1

1| , , , ; ,
m

ijk ijk ij ij j ij ijk l li j k
l

p P z w g x t w v N T M
−

=

 
 = = =  =  

 
   (6) 

where Φ[∙] is the standard normal distribution. Given the independent risks assumption, (6) 

can also be specified in the form of multiple survival models with a binomial probit link 

(Sparapani et al., 2019), thus, estimating (6) independently for each event type k. The 

covariates xij include the event time tj and (time-invariant) predictor variables wij. In addition, 

we also acknowledge the exposure time vijk of respondent i at tj, that is, the number of discrete 

time points since the beginning of the episode for event k. Finally, the covariates also 

comprise Ni(j-1)k, that is, the number of events of type k previously observed up to the 

preceding event time tj-1. For a single (K = 1), non-recurring event, vijk is identical for all 

observation units and Ni(j-1)k = 0, because all individuals have the same study start time and 

units that have already experienced an event are no longer part of the risk set. Thus, vijk and 

Ni(j-1)k are not needed in statistical modelling. Under these conditions, our model reduces to 

the BART survival model introduced by Sparapani and colleagues (2016). In other words, our 

event history approach can be viewed as a generalization of the survival model for competing 

and possibly recurrent events. 

The BART specification of (6) places priors p(Tl) on the tree structure and p(μbl | Tl) 

on the terminal node values given the tree structure as described above. Then, samples can be 

generated from the posteriori distribution for any event time tj and event type k to obtain the 
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posterior distribution pjk. These samples can be used to approximate any conceivable 

distribution of individual and group statistics, such as individual participation probabilities or 

the average dropout propensity of a group of individuals at a certain point in time. 

Prediction of Unconditional Response Rates 

From a BART event history model values of Z can be predicted from the covariates w 

for future survey waves or for new values of w, for example, to evaluate expected response 

rates in a new panel study. Thus, along with the definition of Rubin (1976) the missing 

mechanism assumed here is missing at random (MAR). These predictions can be used to 

estimate nonresponse probabilities for the recurrent or non-recurrent events included in the 

model at each survey wave tj. Importantly, these estimates represent conditional probabilities 

given survival to tj (i.e., given no permanent dropout). Combining the nonresponse 

probabilities for recurrent and non-recurrent events using standard rules of probability theory 

also allows estimating the unconditional response probability at a given wave, thus, 

estimating the expected sample size in a survey wave. 

Formally, survey participation can be understood as a bivariate and time discrete, 

stochastic process (Vt, Zt) with Vt representing survey participation resulting from a non-

recurrent event (i.e., permanent dropout) and Zt the respective respondent outcome for a 

recurrent event (i.e., temporary dropout) at time point t. Both processes can result in survey 

participation (PA) or nonresponse (NR), that is,  ,tv PA NR  and  ,tz PA NR . This 

process is defined by its start distribution (V0, Z0) at the first survey wave and transition 

probabilities P(Vt+1 = vt+1, Zt+1 = zt+1) given the previous states 

( )
 

( )0 0 0 00,...,
, , ,..., ,s s s s t t t ts t

V v Z z V v Z z V v Z z


= = = = = = = . The joint transition probabilities 

for Vt+1 and Zt+1 can be derived from two submodels by splitting the respective probabilities 

into conditional probabilities for the non-recurrent event (Vt+1) and the recurrent event (Zt+1) 

in the following way (see the supplement material for the full derivation of this decomposition 

): 
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( )
 ( )

( )
 ( )

( )
 ( )

1 1 1 1 0,...,

1 1 0,...,

1 1 1 1 0,...,

, | ,

      | ,

      | , ,

t t t t s s s s s t

t t s s s s s t

t t t t s s s s s t

P V v Z z V v Z z

P V v V v Z z

P Z z V v V v Z z

+ + + + 

+ + 

+ + + + 

= = = = =

= = = 

= = = =

. (7) 

Note that in this decomposition the transition probabilities for the non-recurrent event (Vt+1) 

depend on the previous states ( )
 0,...,

,s s s s s t
V v Z z


= = , whereas the respective probabilities for 

the recurrent event (Zt+1) are additionally conditioned on the current state of the recurrent 

event (Vt+1 = vt+1). Each of these transition probabilities can be independently estimated using 

the BART event history approach in (6) and, subsequently, combined to derive the 

unconditional nonresponse probability in a given wave t. 

Consider the example in Figure 3 that describes the potential nonresponse sequences for three 

waves. In wave 1 (t = 0) no nonresponse is observed. In wave 2 (t = 1), the conditional 

probability of temporary ( 1

TDp ) or permanent dropout ( 1

PDp ) is estimated using (6), resulting 

in an overall nonresponse probability of ( )1 1 1 11NR PD PD TDp p p p = + − 
 

. Consequently, the 

unconditional probability of survey participation in wave 2 is 1 11PA NRp p= − . For wave 3 (t = 

2), the calculation follows comparably, albeit also acknowledging the permanent dropout 

probability 1

PDp  from the previous wave. Thus, the unconditional nonresponse probability in 

wave 3 is estimated as ( ) ( ) ( )2 1 1 2 1 2 21 1 1NR PD PD TD PD PD TDp p p p p p p = + −  + −  − 
 

. This logic 

can be continued to estimate the participation probabilities for any following survey wave. 

Moreover, it can also be easily extended to acknowledge additional types of nonresponse. For 

example, permanent dropout might be a consequence of dwindling motivations and, thus, the 

respondent’s active refusal to continue participation in a panel study. However, it might also 

result from an inability to contact the respondent because he or she moved without leaving 

valid contact information. In this case, a sequence of three types of nonresponse could be 

modeled, resulting in a three-step process. 
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The Present Study 

The study examines nonresponse in the German National Educational Panel Study 

(Blossfeldet al., 2011) that studies trajectories of competence development across the life 

course. We will demonstrate how to model participation rates across several measurement 

occasion using event history models that account for competing risks (i.e., participation 

versus temporary dropout versus permanent dropout). This enables us to elucidate unique 

predictors for each type of nonresponse. Moreover, using a BART for model estimation 

(Chipman et al., 2010), we avoid parametric or semi-parametric constraints on the underlying 

model structure. This allows for the inclusion of large sets of predictor variables with 

complex interaction patterns and, thus, makes use of substantially more information than 

typical attrition analyses (e.g., using logistic regression models). 

Method 

Sample and Procedure 

The participants are part of the National Educational Panel Study (NEPS; Blossfeld et 

al., 2011) that follows representative samples of German students across their school careers. 

For this study, we focus on a sample of N = 4,559 students (48% girls) that were initially 

surveyed in grade 5 (year 2010). Subsequent measurements occurred each year until grade 9 

(year 2014), resulting in five measurement waves. The students attended various schools from 

rural and urban regions in Germany (see Steinhauer, Aßmann, Zinn, Goßmann, & Rässler, 

2015, for details on the sampling procedure): about 38% attended general or intermediate 

secondary schools (“Hauptschule / Realschule”), 50% went to higher secondary schools 

(“Gymnasium”), and the remaining 12% encompassed students from several specialized 

school branches. The mean age in grade 5 was M = 15.13 years (SD = 0.51). More 

information on the data collection process including the interviewer selection and training are 

summarized on the project website (https://www.neps-data.de). 

https://www.neps-data.de/
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Measures 

Survey participation. A respondent’s participation status was recorded at each wave 

as either participation, temporary dropout, or permanent dropout. In grade 5, all students 

participated; thus, no dropout was observed. Permanent dropout was defined as an active 

refusal to further participate in the study or an inability to participate. It occurred for different 

reasons such as refusal of a school to participate in the NEPS, refusal of a student within an 

eligible school, or students switching to another school not included in the NEPS. We did not 

distinguish the different types of permanent dropout in our analyses because the respective 

numbers of cases for each category were rather small. In contrast, temporary dropout referred 

to non-participation at a given wave that was not due to permanent dropout. 

Conditioning variables. A total of 77 variables were used to predict nonresponse at 

each survey wave. These variables had been previously used in nonresponse analyses (e.g., 

Zinn, Würbach, Steinhauer, & Hammon, 2018) or were expected to be related to survey 

participation. Most variables were included as respondent characteristics (e.g., sex) and also 

aggregated to the school level (e.g., percentage of female students) to acknowledge individual 

as well as context effects. All variables were measured in the first survey wave or before. 

Respondent characteristics included the age (in years), sex (0 = “male”, 1 = “female”), 

migration background (0 = “no”, 1 = “yes”), mother tongue (0 = “German”, 1 = “other”), 

household size (as number of people), and the number of books at home (1 = “0 to 10 books” 

to 6 = “more than 500 books”) as an indicator of cultural capital (Sieben & Lechner, 2019). 

Moreover, as more specific student characteristics we recorded whether a student had ever 

repeated a school year (0 = “no”, 1 = “yes”), the number of missed school days due to being 

sick, and the grades in German and mathematics (1 = “very good” to 6 = “failing”). We also 

considered various self-reported psychological characteristics: Satisfaction with life, current 

living standards, health, family, friends, and school were each measured with a single item on 

eleven-point response scales from 0 (“completely dissatisfied”) to 10 (“completely satisfied”), 
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subjective health was measured with a single item on a five-point scale from 1 (“very good”) 

to 5 (“very bad”), self-esteem was captured with 10 items (ωcategorical = .86) from Rosenberg 

(1965) on five-point response scales from 1 (“does not apply at all”) to (“applies 

completely”), and self-concept in German (ωcategorical = .75), mathematics (ωcategorical = .89), 

and school (ωcategorical = .82) were each measured with three items on four-point rating scales 

from 1 (“does not apply at all”) to 4 (“applies completely”). In addition, six cognitive 

measures were considered: Perceptual speed (Lang et al., 2014) and reading speed 

(Zimmermann, Gehrer, Artelt, & Weinert, 2012) were each measured as sum scores across 93 

and 51 items, respectively. Figural reasoning was captured with a Raven-type test as a sum 

score across 12 items (ωcategorical = .68; Lang et al., 2014). Orthography (Rel.1 = .96; Blatt et 

al., 2017), mathematical competence (Rel.1 = .80; Duchhardt & Gerdes, 2012), and reading 

competence (Rel.1 = .81; Pohl et al., 2012) were each represented by an item response score 

based on 30, 25, or 33 items, respectively. School characteristics included the school type in 

the form of two dummy-coded variables for “intermediate secondary schools” and “other 

school types” (reference category: “higher secondary school”), the number of students and 

classes in grade 8 as indicators of school size, the type of institution (0 = “public”, 1 = 

“private”), and two dummy-coded variables for the school location as “part urban / part rural” 

and “rural” (reference category: “urban”). Moreover, all respondent, student, and 

psychological characteristics were aggregated to the school level to indicate respective 

contextual influences. Finally, we considered the federal state in Germany as 15 dummy-

coded indicators. 

Statistical Analyses 

Longitudinal nonresponse was analyzed across five waves using the nonparametric 

event history approach described above. The BART model specified 300 trees using α = 0.95 

 

1 The authors reported marginal reliabilities (Adams, 2005) based on an item response model. 
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and β = 2 for the regularization prior p(Tj) as well as l = 3 and k = 2 for the prior p(μbj | Tj). 

That way we followed the recommendations of Chipman and colleagues (2010) for the 

specification of the prior distributions. The Bayesian estimation used 500 burnin samples, a 

thinning of 500 draws in the MCMC algorithm, and 5,000 draws from the posterior 

distribution for the permanent and temporary dropout propensities at each wave and each 

respondent. Convergence was evaluated by means of visual inspections of autocorrelation and 

trace plots. Moreover, the Geweke (1992) statistic was examined by the posterior sample of 

ten (arbitrarily chosen) individuals. Missing values on the covariates (see supplement 

material) were imputed with the variable’s median. For covariates with missing rates 

exceeding 5% additional dummy-variables were created and included the prediction models2. 

The analyses were conducted in R version 3.5.1 (R Core Team, 2018) using the BART 

package version 2.2 (McCulloch, Sparapani, Gramacy, Spanbauer, & Pratola, 2019).  

We validated our approach by conducting two kinds of analyses. First, we performed 

an out-of-sample validation using two-thirds of the total data as training data and one-third as 

test data. The observed data was randomly assigned to the two subsets of data, the training 

and the test data. Then, we estimated the BART models outlined above based on the training 

data and predicted wave-specific probabilities of permanent and temporary dropout based on 

the test data. The predicted values were compared to the observed values in the test data. As a 

measure of accuracy, the percentage of values corresponding to the observed participation 

status in the test data was used. We repeated this process five times to guard against sampling 

bias. As a second form of validation, we estimated the BART models using the full data set 

 

2 In practice, single value imputations are typically not recommended (van Buuren, 2018). However, because 

few variables exhibited substantial missing rates (see supplement material) and our analyses primarily aimed at 

demonstrating an application of the BART event history model, we did not resort to more complex missing data 

models (cf. Zinn & Gnambs, 2018) to simplify the analyses and reporting of results. 
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but excluding the last survey wave. The last wave was used as test data. As before, we 

predicted for all individuals who were still at risk in the last wave their probabilities of 

permanently and temporarily dropping out. Again, the percentage of values that coincided 

between prediction and observation served as a measure of accuracy. Both types of validation 

are state of the art when dealing with models of statistical learning such as BART (e.g., Kern 

et al., 2019). 

Finally, as a proof of concept we compared the results of our BART models to results 

from comparable logistic regression models with LASSO (least absolute shrinkage and 

selection operator) penalization. Logistic regression models with LASSO are parametric 

models that are typically used for studying problems as the one addressed in this article (e.g., 

Pavlou, Ambler, Seaman, Guttmann, Elliot, King, & Omar, 2015). These models were 

validated in the same way as the BART models.  

Data Availability 

Most of the data analyzed in this study is provided at 

https://doi.org/10.5157/NEPS:SC3:8.0.0. Due to German privacy laws, some school variables 

(e.g., type of institution or school location) cannot be made publicly available. The analyses 

syntax to reproduce our results can be found at 

https://github.com/bieneSchwarze/BARTforNonresponse.git. 

Results 

Nonresponse Rates Across Survey Waves 

Across the five survey waves nonresponse rates increased from 11% (wave 2) to 36% 

(wave 5). The percentage of temporary dropout was rather constant and fell at about 4% at 

each wave, whereas permanent dropout increased in an approximately linear fashion (see 

Table 1). In each survey wave the increase in permanent dropout rates varied between 6% 

(wave 2) and 10% (wave 3). The reasons for permanent dropout were manifold. Many 

students dropped out involuntarily because they switched to another school or, in later waves, 

https://doi.org/10.5157/NEPS:SC3:8.0.0
https://github.com/bieneSchwarze/BARTforNonresponse.git
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left the school system altogether (e.g., starting a traineeship). The design of the NEPS 

implements a different (rather limited) survey program for these cases. Thus, we considered 

them permanent dropouts. Moreover, after the initial wave some schools refused further 

participation in the NEPS, presumably, to avoid unduly disruptions of the school routines. In 

contrast, active refusals on part of the students were rather rare. 

Prediction of Nonresponse Propensity 

Predictors for two types of survey nonresponse (i.e., temporary and permanent 

dropout) in the NEPS were evaluated using BART event history modeling. The MCMC 

algorithm for these models converged satisfactorily. We observed no substantial 

autocorrelations in consecutive draws of the MCMC algorithm and the trace plots indicated 

good mixing behavior of the distinct parts of the generated chain (see supplement material). 

Moreover, Geweke (1992) tests showed no pronounced differences between the examined 

parts of the Markov chain. Thus, at this point our BART approach worked well for the data. 

As a second step, we validated our models for survey nonresponse. Overall, our BART 

models performed well in predicting observed temporary and permanent dropout patterns for 

both types of validation criteria. All accuracy indices for the BART models ranged between 

90% and 97% (see Table 2). With accuracies between 89% and 99% the logistic regression 

models with LASSO performed similarly3. These results show that neither approach seemed 

to outperform the other, at least not concerning the considered accuracy measure.  

 

3 For the out-of sample cross-validation, we observed a change of less than one percent in the accuracy values 

over the five random draws of the training and test datasets for both modelling approaches (i.e., BART and 

logistic regression with LASSO). In other words, the accuracy values obtained were robust to the random 

drawing of training and test quantities. 
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Relative Variable Importance 

The relative importance of the covariates for the trees of the BART models that 

predicted the nonrecurrent event (i.e., permanent dropout) are summarized in Figure 4 

(complete results for all covariates are given in the supplementary material). Permanent 

dropout was primarily driven by the measurement occasion, that is, the survey wave: the time 

variable was chosen in about 26% of all trees. Interestingly, individual-level variables (i.e., 

respondent, student, and psychological characteristics) were rather uninformative for 

predicting permanent dropout. In contrast, context variables were more important. For 

example, the mean number of sick days (pvi = .08), the mean grade in mathematics (pvi = .05), 

or the mean subjective health (pvi = .04) in the schools were relevant predictors of permanent 

dropout, whereas the respective respondent information was not. We received a slightly 

different picture for the prediction of temporary dropout. Figure 5 summarizes the results for 

covariates with an important contribution to a dropout event (full results are given in the 

supplementary material). Here we found a strong impact of the students’ mean satisfaction 

with their health status on the school level (pvi = .31), the mean number of students with 

migrations background at a school (pvi = .14), and the number of books at home (pvi = .10). 

The number of previous nonresponse events (pvi = .07), the survey wave (pvi = .03), the mean 

reading speed at school (pvi = .07) , and the number of students in grade 8 (as an indicator of 

school size; pvi = .06), and the time without a participation event predicted temporary dropout 

as well, whereas further respondent and school context information did not as much. 

Together, these results highlight the importance of context information to predict nonresponse 

in large-scale assessments conducted in schools. 

Interestingly, logistic regression models with LASSO identified rather different 

covariates predicting dropout as BART (see Figures 4 and 5). For example, the BART model 

found the survey wave to be the most important factor triggering permanent dropout, whereas 

the LASSO regression identified the proportion of students with migration background as the 
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driving force. BART also uncovered several important covariates that played no role 

according to LASSO regression (e.g., mean number of sick days in grade 5, mean grade in 

mathematics in grade 5). On the other hand, the logistic regression model considered a 

student's German grade to be relevant for his/her permanent dropout propensity, which 

seemed to be completely irrelevant according to the BART model. Similar discrepancies were 

observed for the prediction of temporary dropout. Whereas BART identified the mean 

satisfaction with health and the proportion of students with migration background as the most 

important factors, LASSO regression highlighted the waves already spend in the study (i.e., 

the sojourn time per wave) and the total number of waves participating in the study. Again, 

most factors found relevant according to BART (e.g., number of books at home and mean 

reading speed in grade 5) were not marked to be essential by LASSO regression (and vice 

versa). In order to assess whether multicollinearity causes the differences between the 

predictor sets identified as important by the two approaches, we examined the correlations 

and variance inflation factors (VIF) between all predictors. As expected, some predictors were 

substantially correlated (e.g., the cognitive measures or grades). However, none of the 

important predictors identified by the BART models or the LASSO regressions showed 

substantial multicollinearity. We conclude from this finding that multicollinearity is not the 

driving force behind the observed differences. Instead, we find it very likely that the 

differences are caused by higher level interactions that BART considers, but LASSO does 

not. Thus, this is a clear argument for the trustworthiness of BART results. 

Prediction of Participation Rates 

The BART event history models allow predicting the participation rates at any survey 

wave (potentially, even beyond the observational period of the study) given the observed 

covariates. Importantly, these represent conditional probabilities dependent that no permanent 

dropout has occurred in the previous waves. Panel A in Figure 6 summarizes the conditional 

probability distributions of permanent dropout of all individuals in waves 2 to 5. These results 
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show that the conditional probabilities of permanent dropout were on average about 6.6% 

with a 95% credibility interval (CrI) of [5.9%, 7.2%] in wave 2 and increased to 10.0%, 95% 

CrI [9.1%, 10.9%], in wave 5. In contrast, the conditional probabilities of temporary dropout 

for the individuals who were at risk to experience such an event (panel B in Figure 6) were 

nearly identical across the four survey waves. They were about 5.0%, 95% CrI [4.4%, 5.6%] 

in wave 2, 5.2%, 95% CrI [4.7%, 5.7%], and 5.5%, 95% [4.8%, 6.0%], in the waves 3 and 4, 

and 6.6%, 95% CrI [5.6%, 7.5%] in wave 5, respectively. Following the two-step process 

outlined above, we also estimated the unconditional response probabilities, that is, the 

expected participation rates at each wave (panel C in Figure 6). These results show 

continually decreasing response rates in successive survey waves. Whereas a response rate of 

88.8%, 95% CrI [87.8%, 89.6%], was predicted for wave 2, it decreased to 63.7, 95% CrI 

[62.3%, 65.0%], for wave 5. Importantly, these model predicted participation rates closely 

reproduced the descriptive survey participation rates given in Table 1. Therefore, the BART 

event history model could be used to predict expected response rates beyond the observational 

period. 

Discussion 

Machine learning methods offer intriguing opportunities for survey researchers in 

various contexts (Buskirk et al., 2018; Kern et al., 2019; Toth & Phipps, 2014). Particularly, 

tree-based approaches include a bundle of versatile alternatives to parametric regression that 

allow the modeling of complex relationships with computational efficiency. This paper 

presented a recently introduced Bayesian ensemble method (Chipman et al., 2010) for the 

analysis of nonresponse in social surveys. In contrast to wave-to-wave predictions that 

dominated previous nonresponse research (e.g., Durrant & Steele, 2009), we focused on the 

analysis of survey participation across multiple waves. We developed a nonparametric BART 

event history model to analyze competing risks for different types of nonresponse, that is, 

temporary and permanent dropout. This modeling strategy enables researchers identifying 
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important variables driving the nonresponse process and, more importantly, constructing 

longitudinal prediction models. We applied our novel approach to data from a German large-

scale assessment and showed that nonresponse in longitudinal school-based studies is 

predominately driven by the school context (e.g., mean number of sick days and mean 

satisfaction with health) and to a lesser degree by student characteristics. As expected, 

nonresponse also increased throughout the survey with each wave. The model-implied 

nonresponse rates highlighted that permanent dropout increased from 6.6% to 10.0%, whereas 

temporary dropout was nearly constant across the survey waves. Using two types of validity 

criteria and a model comparison with logistic regression with LASSO, we were able to 

highlight the advantages of BART. For example, in our application BART was able to predict 

the last wave’s response pattern using only information from previous waves. A notable 

strength of our BART modeling approach is its flexibility to acknowledge different 

nonresponse processes. Although our analyses were limited to temporary and permanent 

dropout, an extension to additional types of nonresponse is straightforward by adapting the 

outcome coding (see Figure 2). For example, it is advisable to distinguish active refusal to 

participate in a survey from a failure to contact the respondent. In this case, three competing 

events could be contrasted. Even structural breaks resulting from different contexts 

experienced by the respondents could explicitly be modeled. In our data example, a 

substantial proportion of students left the school system after wave 3 (and, thus, turned into 

permanent dropout cases by design). Thus, more precise estimates of nonresponse trajectories 

might be derived by modeling different sequences of nonresponse, that is, before and after the 

anticipated structural break resulting from the different educational choices. 

Implications for Survey Management 

The presented nonresponse model can facilitate operational survey management in 

different ways. For example, prediction models can help gauging expected sample sizes 

across the course of a panel study. If a valid prediction model can be established, the 
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predicted response rates for upcoming survey waves can be used to plan sample refreshments 

or preestimate sample mortality (i.e., timeframes for discontinuing further surveying). 

Alternatively, these analyses might also guide strategies to prevent nonresponse from taking 

place in the first place. If respondents with a high nonresponse probability can be identified 

beforehand, incentives might be adjusted accordingly (cf. Tourangeau, Brick, Loh, & Li, 

2017). Adaptive incentivisation strategies might even link the size of an incentive to the 

predicted probability of nonresponse (see Figure 7): respondents that are expected to dropout 

are promised higher monetary compensations as compared to respondents with lower dropout 

propensities. Finally, if relevant characteristics of nonresponding units can be identified, these 

variables might guide sampling strategies for future surveys. Then, oversampling plans might 

be devised that explicitly target these subgroups with high propensity to dropout. 

Limitations and Possible Extensions 

Although the BART framework allows for complex modelling approaches, our event 

history model could be extended in several ways. For example, our predictor set was limited 

to information collected prior to or at the first measurement occasion. However, panel studies 

collect new information about respondents in each wave. A fruitful model extension pertains 

to the inclusion of time-varying covariates that are gathered during the course of a 

longitudinal study. Moreover, in the present form, our model considers only observed 

individual-specific heterogeneity. Although it can be assumed that the large number of 

predictors studied covers individual-specific heterogeneity on its whole, in the future our 

approach could be extended by a frailty term. It would also be interesting to know how well 

our BART approach fares as compared to other machine learning methods such as random 

forests and boosted trees. Because the evaluation of their relative performance is beyond the 

scope of this study, it is an important undertaking left for future work. In a related vein, it 

might also be worthwhile to extend the scope of our BART approach and evaluate whether it 

is suitable for imputing missing values of time-to-event data. So far, studies have already 
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highlighted the potential of BART for imputing MAR covariates (Xu, Daniels, & Winterstein, 

2016) or for imputing MAR data in the context of augmented inverse probability estimation 

and penalized splines propensity prediction (Tan, Flannagan, & Elliot, 2019). The extension 

of these approaches to longitudinal data seems a worthwhile endeavour for future work. 

Finally, the generalizability of our findings on the predictors of dropout beyond the studied 

student sample should be an objective of further research. This would help establishing 

whether the identified predictors of nonresponse are similar important in different populations 

(e.g., adults) and contexts (e.g., household surveys). 

Conclusion 

Modern machine learning techniques such as BARTs augment the statistical toolbox 

of survey researchers for nonresponse adjustments and the examination of nonresponse 

patterns. In longitudinal settings, BART prediction models facilitate the estimation of 

response rates in upcoming survey ways. For this purpose, the present study described a novel 

event history approach that allows examining competing risks for different types of 

nonresponse. In an empirical demonstration, we showed that this technique allows identifying 

important drivers of temporary and permanent dropout across multiple survey waves. Thus, 

operational survey management might use respective prediction models to gauge sample 

mortality and plan sample refreshments at an early stage. 
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Data Availability 

Most of the data analyzed in this study is provided at 

https://doi.org/10.5157/NEPS:SC3:8.0.0. Due to German privacy laws, some school variables 

(e.g., type of institution or school location) cannot be made publicly available. 

 

  

https://doi.org/10.5157/NEPS:SC3:8.0.0
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Software Information 

The analyses were conducted in R version 3.5.1 using the BART package version 2.2. 

The analyses syntax to reproduce our results will be available at 

https://github.com/bieneSchwarze/BARTforNonresponse.git. 
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Table 1. 

Nonresponse Across Survey Waves. 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Survey participation 4,559 (100%) 4,064 (89%) 3,606 (79%) 3,275 (72%) 2,905 (64%) 

Temporary dropout - 202 (4%) 201 (4%) 187 (4%) 214 (5%) 

Permanent dropout: - 293 (6%) 752 (16%) 1,097 (24%) 1,440 (32%) 

- Student switched school  144 (3%) 432 (9%) 6 (0%) - 

- Student left school system  - - 924 (20%) 1,145 (25%) 

- Student refused  - - 53 (1%) 203 (4%) 

- School refused  111 (2%) 219 (5%) - - 

- Unknown / other reasons  38 (1%) 96 (2%) 114 (3%) 92 (2%) 

Total 4,559 (100%) 4,559 (100%) 4,559 (100%) 4,559 (100%) 4,559 (100%) 
Note: Due to rounding the percentage of survey participation may not equal 100%. 

 

 



Running head: BART for nonresponse (Supplement) 

Table 2. 

Accuracy measure of validation studies. 

Type of 

Validation 

Wave- 

specific 

accuracy† 

Model for permanent 

dropout 

Model for temporary 

dropout 

BART Logit with 

LASSO 

BART Logit with 

LASSO 

Out of sample: 

over all waves 

Wave 2 0.95 0.94 0.95 0.94 

Wave 3 0.91 0.89 0.96 0.99 

Wave 4 0.93 0.91 0.96 0.99 

Wave 5 0.90 0.89 0.96 0.98 

Out of sample: 

only last wave 

Wave 5 0.90 0.90 0.97 0.95 

Note: † Wave 1 only consists of participants and constitutes the reference set for all further 

waves. Therefore, per definition in Wave 1 no dropout had occurred and is thus not 

modeled/predicted.  
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Figure 1. Example of a regression tree of depth d = 2 with two splits (including cut scores c1 

and c2) and m = 3 terminal nodes. 
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Figure 2. Outcome coding for different event types. 
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Figure 3. Two-step process of survey participation for two types of nonresponse across three 

waves. 
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Figure 4. Relative importance of selected covariates for predicting permanent dropout with t as survey wave using BART and LASSO regression. The 

solid line represents the threshold for nonignorable importance, filled dots mark variables of nonignorable importance with significant impact (p < .05), 

and empty dots mark variables of ignorable importance with non-significant impact (p > .05). Full results are given in the supplement material. 
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Figure 5. Relative importance of selected covariates for predicting temporary dropout with t as survey wave, v as the event time, and N as the number 

of previous dropouts for BART and LASSO regression. The solid line represents the threshold for nonignorable importance, filled dots mark variables 

of nonignorable importance with significant impact (p < .05), and empty dots mark variables of ignorable importance with non-significant impact (p < 

.05). Full results are given in the supplemental material.  
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Figure 6. Predicted participation status across waves. A: Conditional permanent dropout rates, B: Conditional temporary dropout rates, C: 

Unconditional participation rates. The black curves are the posterior densities of the estimated probabilities. The black dots mark their median, 

the horizontal lines their 95% credibility intervals, and the red dots in panel A and B the empirical frequencies of the number of observed 

events.  
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Figure 7. Example of an adaptive incentivisation scheme dependent on predicted participation probabilities. The gray box represents the baseline 

incentive and the dashed line the additional incentive. 
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S1. Derivation of Decomposition of Formula for Survey Participation at Wave 𝒕 + 𝟏 

 

In the stochastic process (𝑉𝑡, 𝑍𝑡), 𝑉𝑡 represents the survey participation resulting from a non-

recurrent event (i.e., permanent dropout) and 𝑍𝑡 the respective respondent outcome for a 

recurrent event (i.e., temporary dropout) at time point t. The joint transition probabilities for 

𝑉𝑡+1 and 𝑍𝑡+1 can be derived from two submodels by splitting the respective probabilities into 

conditional probabilities for the non-recurrent event (𝑉𝑡+1) and the recurrent event (𝑍𝑡+1) in 

the following way: 

𝑃(𝑉𝑡+1 = 𝑣𝑡+1, 𝑍𝑡+1 = 𝑧𝑡+1|(𝑉𝑠 = 𝑣𝑠, 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡}) =

=
𝑃(𝑉𝑡+1 = 𝑣𝑡+1, 𝑍𝑡+1 = 𝑧𝑡+1, (𝑉𝑠 = 𝑣𝑠, 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})

𝑃((𝑉𝑠 = 𝑣𝑠, 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})

=
𝑃(𝑉𝑡+1 = 𝑣𝑡+1, 𝑍𝑡+1 = 𝑧𝑡+1, (𝑉𝑠 = 𝑣𝑠, 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})

𝑃(𝑍𝑡+1 = 𝑧𝑡+1, (𝑉𝑠 = 𝑣𝑠 , 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})
   

∗  
𝑃( 𝑍𝑡+1 = 𝑧𝑡+1, (𝑉𝑠 = 𝑣𝑠 , 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})

𝑃((𝑉𝑠 = 𝑣𝑠, 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})

= 𝑃(𝑉𝑡+1 = 𝑣𝑡+1 |𝑍𝑡+1 = 𝑧𝑡+1, (𝑉𝑠 = 𝑣𝑠, 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})

∗  𝑃(𝑍𝑡+1 = 𝑧𝑡+1| (𝑉𝑠 = 𝑣𝑠 , 𝑍𝑠 = 𝑧𝑠)𝑠∈{0,…,𝑡})  
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Table S1. 

Conditioning Variables for Nonresponse Analyses 

  M SD Range MV 

 Respondent characteristics     

1. Sex 0.5 0.5 [0, 1] 0% 

2. Age 15.1 0.5 [12.7, 18.2] 0% 

3. Mother tongue 0.1 0.3 [0, 1] 0% 

4. Migration background 0.2 0.4 [0, 1] 0% 

5. Household size 4.5 1.7 [2, 35] 5% 

6. Number of books at home 4.0 1.4 [0, 6] 1% 

 Student characteristics     

7. Repeated school 0.1 0.3 [0, 1] 2% 

8. Number of days sick 2.0 3.8 [0, 50] 21% 

9. Grade in German 2.3 0.9 [1, 6] 7% 

10. Grade in mathematics 2.3 0.9 [1, 6] 7% 

 Psychological characteristics     

11. Satisfaction with life 8.2 2.3 [0, 10] 5% 

12. Satisfaction with current living standards 8.7 2.2 [0, 10] 4% 

13. Satisfaction with health 8.8 2.2 [0, 10] 3% 

14. Satisfaction with family 9.1 2.0 [0, 10] 4% 

15. Satisfaction with friends 8.9 2.0 [0, 10] 3% 

16. Satisfaction with school 7.8 2.5 [0, 10] 3% 

17. Subjective health 1.7 0.7 [1, 5] 1% 

18. Self-esteem 4.0 0.7 [1.0, 5.0] 15% 

19. German self-concept 3.0 0.6 [1, 4] 7% 

20. Mathematical self-concept 2.9 0.8 [1, 4] 7% 

21. School self-concept 3.2 0.6 [1, 4] 7% 

22. Perceptual speed 44.0 13.0 [1, 93] 0% 

23. Reading speed 21.5 6.9 [0, 51] 0% 

24. Reasoning 7.0 2.6 [0, 12] 0% 

25. Orthography 0.0 1.3 [-7.2, 4.6] 0% 

26. Mathematical competence 0.1 1.2 [-4.4, 4.0] 0% 

27. Reading competence 0.0 1.2 [-4.2, 4.1] 0% 

 School characteristics     

28. School type: intermediate secondary 0.2 0.4 [0, 1] 0% 

29. School type: other 0.3 0.4 [0, 1] 0% 

30. Number of students in grade 8 102.8 50.7 [12, 346] 2% 

31. Number of classes in grade 8 3.9 1.7 [1, 12] 2% 

32. Institution type 0.1 0.3 [0, 1] 0% 

33. School location: part urban / part rural 0.4 0.5 [0, 1] 0% 

34. School location: rural 0.1 0.3 [0, 1] 0% 

Note. Respondent, student, and psychological characteristics aggregated to the school 

level and dummy-indicators for federal states and missing values are not included. 

 



BART FOR NONRESPONSE (SUPPLEMENT)  4 

 

Figure S1. Autocorrelation plots for BART event history model. A = Permanent dropout model, B = Temporary dropout model. 
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A.  
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Figure S2. Trace plots for BART event history model. A = Permanent dropout model, B = 

Temporary dropout model. 
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Figure S3. Relative covariate importance for predicting permanent dropout with t as survey wave, v as the event time, and N as the number of previous 

dropouts for BART. The solid line represents the threshold for nonignorable importance, filled dots mark variables of nonignorable importance, 

and empty dots mark variables of ignorable importance. 
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Figure S4. Relative covariate importance for predicting temporary dropout with t as survey wave, v as the event time, and N as the number of previous 

dropouts for BART. The solid line represents the threshold for nonignorable importance, filled dots mark variables of nonignorable importance, 

and empty dots mark variables of ignorable importance.  


