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A B S T R A C T

Information and communication technology (ICT) literacy encompasses a range of cognitive abilities that 
facilitate the effective use of digital technologies. Two studies on German students investigated the role of 
reading comprehension and mathematical competence in the development of ICT literacy in adolescence. A 
variance decomposition analysis (N = 13,335) revealed that both competence domains together accounted for 
nearly half of the explained item variances in two ICT literacy assessments. Additionally, a cross-lagged panel 
analysis (N = 4,872) demonstrated that reading and mathematical competencies predicted ICT literacy growth 
over three years, while ICT literacy also had reciprocal effects on domain-specific competencies. These findings 
emphasize that ICT literacy is not merely a technical skill set but is also closely related to other cognitive abilities.

The ability to effectively use information and communication tech-
nologies (ICT) has become a crucial competence in modern societies, 
shaping various aspects of daily life including education, work, and 
social participation (e.g., Falck et al., 2021; Hertweck & Lehner, 2025; 
Lei et al., 2021). While diverse factors such as motivation, personal in-
terests, and habitual usage patterns have been shown to contribute to 
the development of ICT competence across the life course (e.g., Kar-
piński et al., 2023; Senkbeil, 2022, 2023; Zylka et al., 2015), it is widely 
recognized that also cognitive abilities play a critical role in how in-
dividuals acquire and apply ICT skills (Engelhardt et al., 2021; Weber & 
Greiff, 2023). Theoretical frameworks on digital competence emphasize 
that ICT proficiency extends beyond technical knowledge (e.g., Fraillon 
& Duckworth, 2025; Senkbeil et al., 2013; Vuorikari et al., 2022). 
Rather, a broad set of cognitive abilities from rather basic problem- 
solving abilities to acquired competencies such as reading comprehen-
sion contribute to an individual’s ability to use digital environments 
effectively. Despite widespread agreement that digital competencies 
comprise various cognitive and noncognitive factors, empirical research 
on the cognitive basis of ICT skills remains scarce (but see Engelhardt 
et al., 2020; Senkbeil, 2022; Senkbeil & Ihme, 2020; Wicht et al., 2021).

The present study examines the relationship between ICT literacy 
and two competence domains, reading and mathematics, that are 
considered fundamental abilities for successful participation in modern 
society (Weinert et al., 2019) and may also play key roles in shaping 
individuals’ ability to process, evaluate, and use digital information. 

After outlining several theoretical assumptions and describing possible 
effect mechanisms, two studies on German students are presented that 
examine how reading and mathematical competencies contribute to ICT 
skills. Furthermore, reciprocal influences between these domains are 
explored to highlight the dynamic interplay between ICT literacy and 
conventional literacies across students’ educational trajectories.

1. The literacy concept and models of intelligence

The concept of literacy, as commonly used in educational psychol-
ogy, refers to domain-specific competencies such as reading and math-
ematics that are essential for effective participation in modern society 
(Weinert et al., 2019). Unlike curriculum-based knowledge taught in 
schools, literacy emphasizes functional competencies, meaning the 
ability to apply knowledge in real-world situations. Being literate in a 
given domain thus entails not only possessing relevant knowledge, but 
also being able to correctly apply that knowledge to concrete, everyday 
problems. While initially focused on reading, writing, and numeracy, the 
concept of literacy has considerably expanded over time to encompass a 
wider range of domains reflecting essential skills for modern life. These 
include disparate skills such as scientific literacy (Rudolph, 2024), 
health literacy (Tavousi et al., 2022), and increasingly also ICT literacy 
(Fraillon & Duckworth, 2025).

In contrast, traditional models of intelligence conceptualize compe-
tencies primarily as a form of crystallized intelligence (Cattell, 1987), 
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that is, accumulated knowledge and skills acquired through education 
and experience. The Cattell-Horn-Carroll (CHC) model (McGrew, 2005), 
for example, more specifically distinguishes between quantitative 
knowledge (i.e., the ability to comprehend mathematical concepts), 
reading/writing (i.e., basic reading and writing abilities), and compre-
hension knowledge (i.e., a person’s acquired knowledge) which along-
side various domain-general abilities such as fluid reasoning, working 
memory, and processing speed constitute broad cognitive abilities 
(Stratum II) that together form general ability at the apex of a hierar-
chical cognitive model (Stratum III).

While mathematical and reading literacies as well as other literacies 
(e.g., science) align closely with specific facets in the CHC model, lit-
eracies typically extend beyond static knowledge. Because they 
emphasize the application and transfer of knowledge to novel or com-
plex contexts (Weinert et al., 2019), literacies also draw on domain- 
general cognitive abilities, particularly fluid reasoning. Educational 
literacies can therefore be understood as forms of domain-specific 
crystallized intelligence interacting with domain-general cognitive 
abilities, especially in cognitively demanding tasks. These determine 
how well individuals can cope with challenges in modern, information- 
rich society.

2. Defining ICT literacy

The terminology used to describe the knowledge and skills required 
for proficient use of digital technologies such as computers, smart-
phones, or online services varies widely across scientific discourse and 
policy documents. Terms such as ICT literacy, technology literacy, 
computer literacy, and digital literacy are often used interchangeably to 
refer to a set of essential competencies for individuals in digital society 
(Godaert et al., 2022). Among these, ICT literacy is frequently viewed as 
a meta-competence that encompasses both technical and cognitive skills 
enabling individuals to effectively use digital technologies in personal, 
academic, and professional contexts (ETS, 2002; Senkbeil et al., 2013). 
Typically defined from a functional perspective (Weinert et al., 2019), 
ICT literacy not only subsumes basic operational knowledge of digital 
applications, but also includes information-related competencies that 
allow individuals to locate, critically evaluate, and apply digital infor-
mation in various contexts (Fraillon & Duckworth, 2025; Siddiq et al., 
2016). As a result, ICT literacy is often understood as a combination of 
technical abilities (e.g., computer skills), higher-order cognitive skills (e. 
g., problem-solving), and acquired competencies (e.g., reading) that 
support digital activities such as information retrieval, content creation, 
communication, and creative expression in digital environments 
(Calvani et al., 2008; Engelhardt et al., 2021; ETS, 2002).

A related but distinct concept is the ability for problem-solving in 
technology-rich environments (PSTRE; Kirsch & Lennon, 2017), which 
is commonly used in research on adult digital competencies. PSTRE 
focuses on individuals’ ability to solve goal-directed tasks in digital 
contexts and emphasizes practical, work-related problem-solving stra-
tegies with digital technologies, like filling out forms or troubleshooting 
software. In contrast, ICT literacy is broader in scope and also includes 
information-related competencies, such as the critical evaluation of 
digital content and the ability to locate, process, and communicate in-
formation effectively. An even more comprehensive perspective is given 
by the digital competence (DigiComp) framework (Vuorikari et al., 
2022) that describes digital skills required for active citizenship, 
employability, and lifelong learning. Unlike ICT literacy, which is pri-
marily assessed as a cognitive construct, DigiComp explicitly also in-
cludes ethical, social, and security-related dimensions such as online 
safety, data privacy, and digital well-being. While there is a pronounced 
overlap between the two constructs, DigiComp extends beyond ICT lit-
eracy by also addressing behavioral and ethical dimensions of digital 
engagement. Therefore, ICT literacy can be understood as the cognitive 
foundation within an overarching concept of digital competence. It 
provides the necessary technical and cognitive skills underlying an 

individual’s ability to engage effectively with digital technologies.

3. ICT literacy in relation to conventional literacies

ICT literacy is a context-dependent blend of technical skills and basic 
cognitive abilities (Fraillon and Duckworth, 2025). While the cognitive 
component is seldom explicitly defined, it is sometimes suggested to 
encompass key abilities such as higher-order mental processes like 
problem-solving and conventional literacies like reading and numeracy 
(Calvani et al., 2008; Engelhardt et al., 2021). Accordingly, some 
empirical research has uncovered substantial associations between ICT 
literacy and various cognitive domains. For example, studies have re-
ported bivariate correlations between ICT literacy and indicators of 
basic intellectual capacity such as logical reasoning ranging from 0.50 to 
0.80 (Senkbeil, 2022; Senkbeil & Ihme, 2020); slightly smaller associ-
ations of about 0.40 have been reported for broader measurements of 
intelligence and performance in everyday computer tasks (Lintunen 
et al., 2024). Correlations with reading comprehension and mathemat-
ical competence fell within a similar range, around 0.60 (Holenstein 
et al., 2021; Wicht et al., 2021). These results highlight the close rela-
tionship of ICT literacy with both domain-general and domain-specific 
abilities. Several theories offer explanations for how conventional lit-
eracies support the development of ICT literacy and, conversely, how 
ICT literacy may enhance conventional literacies.

3.1. ICT literacy and reading

A substantial share of digital information is still text-based, espe-
cially in professional and educational settings (Eurostat, 2024). There-
fore, reading comprehension is considered a crucial prerequisite for the 
efficient use of digital technologies (Engelhardt et al., 2021). Tasks such 
as searching for information, learning from blogs or Wikipedia, and 
communicating on social media rely on processing written content. 
Thus, many ICT tasks require reading to some degree, though not always 
higher-order reading comprehension (e.g., when installing software). 
Kintsch (1998) construction-integration model describes reading as a 
two-stage process: in the construction phase, readers generate multiple 
interpretations using prior knowledge, while the integration phase fil-
ters out irrelevant interpretations to form a coherent mental represen-
tation. When engaging with digital content (e.g., websites, search 
results), individuals follow similar steps by constructing meaning from 
fragmented information and integrating it into a coherent understand-
ing. Thus, ICT literacy often requires synthesizing diverse information 
sources, which is facilitated by cognitive processes sometimes referred 
to as multiple documents literacy (Rouet, 2006). This literacy is, in turn, 
closely related to general reading comprehension abilities (Mahlow 
et al., 2020) that have been linked to ICT literacy (Engelhardt et al., 
2020; Wicht et al., 2021).

Another explanation is provided by cognitive load theory (Sweller, 
2024) which suggests that learning depends on working memory ca-
pacity and processing efficiency. Skilled readers process texts more 
fluently due to automatization (Perfetti, 2007), while those struggling 
with digital texts, hyperlinks, or interfaces may experience increased 
cognitive strains, making ICT tasks more difficult. Dual coding theory 
(Sadoski & Paivio, 2013) further postulates that people use verbal 
(linguistic) and non-verbal (visual) cognitive channels to encode novel 
information. Interpreting software interfaces, for example, requires 
linking text-based labels with icons and buttons. Similarly, tutorials for 
new applications often combine written explanations with schematic 
representations of procedures. Skilled readers integrate written texts 
with digital graphics and multimedia more effectively (Guo et al., 2020), 
which is an essential requirement for ICT literacy. These theories 
highlight how reading proficiency can reduce cognitive strain and 
improve cross-media learning, thereby enhancing ICT literacy.

Conversely, ICT literacy might also influence the development of 
reading skills. Multiple documents literacy theory (Rouet, 2006) 
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suggests that readers often have to integrate information from various 
sources, such as websites, articles, and social media, to form a coherent 
understanding of a topic. Individuals with higher ICT skills engage more 
frequently and broadly with digital technologies (Senkbeil, 2022), using 
diverse sources like discussion boards, online databases, and digital 
news. This exposure may strengthen critical reading skills by promoting 
the ability to process, evaluate, and integrate complex information from 
multiple texts. Similarly, the rapid pace of change in digital technologies 
requires ongoing learning of and adaptation to unfamiliar applications. 
Successful engagement with new technologies may, therefore, improve 
cognitive flexibility, that is the ability to adapt and apply knowledge 
across different contexts (Shapiro & Niederhauser, 2004). Greater 
cognitive flexibility has been shown to improve overall reading 
comprehension (Escobar & Espinoza, 2025; Hung & Loh, 2021).

Taken together, various theoretical perspectives suggest potential 
bidirectional effects between ICT literacy and reading comprehension. 
While strong reading skills are considered essential for developing ICT 
literacy, ICT literacy, in turn, may also enhance reading proficiency.

3.2. ICT literacy and math

Two complementary theories describe how higher mathematical 
competencies may contribute to the development of ICT literacy. Cat-
tell’s (1987) investment theory explains these effects through the rela-
tionship between fluid and crystallized intelligence. People “invest” 
their innate problem-solving abilities to build competencies through 
learning and experience. Respective research shows that fluid intelli-
gence predicts both academic achievement and the rate of learning 
progress (Lechner et al., 2019; Primi et al., 2010). Since mathematical 
problem-solving is closely linked to fluid intelligence (Peng et al., 2019), 
it partially reflects higher-order reasoning abilities. In the CHC model of 
intelligence both are considered indicators of general cognitive abilities 
(McGrew, 2005). This suggests that individuals who develop strong 
mathematical competencies will be better equipped to handle ICT tasks 
that require logical reasoning or algorithmic thinking. Thus, fluid in-
telligence investments innate to mathematical abilities drive structured 
problem-solving in digital environments.

While investment theory focuses on intelligence and knowledge 
accumulation, process overlap theory (Kovacs & Conway, 2016) ex-
plains reciprocal effects between mathematical competencies and ICT 
literacy through shared cognitive processes. Different domain-general 
and domain-specific cognitive abilities rely on a common pool of 
mental resources (Pokropek et al., 2022). Because both mathematical 
competencies and ICT literacy share overlapping cognitive processes 
such as those involved in working memory or attention, the skills 
developed in one area naturally enhance performance in the other. In 
other words, individuals with stronger mathematical abilities will find 
ICT tasks easier because they already possess executive cognitive com-
ponents that also facilitate effective engagement with digital 
technologies.

Despite these general effects, the contribution of specific mathe-
matical competencies to ICT literacy is likely highly task-dependent. In 
many everyday tasks, digital tools such as calculators or spreadsheets 
are used to address mathematical problems. As a result, successful 
completion of mathematical tasks often requires both mathematical 
knowledge and ICT proficiency, including familiarity with relevant 
software. Individuals who engage in mathematical problem-solving 
more frequently, thus, are more likely to use digital tools in the pro-
cess, thereby incidentally strengthening their ICT skills.

The mechanisms described are likely not unidirectional; rather, they 
may also explain how ICT literacy contributes to the development of 
mathematical competence. Process overlap theory (Kovacs & Conway, 
2016) suggests ICT skills strengthen domain-general cognitive pro-
cesses, which are also important for mathematical reasoning. As in-
dividuals become more proficient in ICT, they improve these shared 
cognitive functions, which in turn supports mathematical learning. 

Additionally, individuals with better ICT literacy are also more likely to 
use mathematical software which might help individuals to develop a 
deeper understanding of mathematical operations and numerical prob-
lem-solving.

In summary, influences between ICT literacy and mathematical 
competence are likely reciprocal. Strong mathematical skills may 
enhance ICT literacy indirectly through the effects of fundamental 
cognitive abilities. Conversely, ICT proficiency may provide cognitive 
advantages that reinforce mathematical understanding.

4. Research objectives

ICT literacy is an essential skill in modern society that enables in-
dividuals to efficiently use digital technologies for specific purposes. 
However, its cognitive basis remains largely uncharted territory, 
particularly in relation to conventional literacies such as reading 
comprehension and mathematical competence. Moreover, much of the 
existing research relies on subjective self-assessments of one’s perceived 
digital skills (Godaert et al., 2022), which often suffer from validity 
problems due to systematic over- or underestimation (Ballantine et al., 
2007; Porat et al., 2018). To address these gaps, two studies on German 
students examine the relationship between objective measures of ICT 
literacy, reading, and mathematics.

The first study adopts a cross-sectional design to examine item-level 
data from two ICT literacy assessments. It investigates how different 
items impose different cognitive demands, depending on the presented 
task. For example, ICT tasks with longer textual content may rely more 
heavily on reading comprehension, whereas items involving the use of 
spreadsheets may depend more on mathematical competence. There-
fore, this study adopts a factor-analytic approach to decompose the 
variance in each ICT item into components attributable to conventional 
literacies as opposed to general ICT literacy. In addition, two indicators 
of general cognitive abilities, that is, logical reasoning and perceptual 
speed, are included to estimate the relative contribution of reading and 
math abilities while controlling for basic intellectual capacity. The 
second study takes a longitudinal perspective and presents differential 
change analyses to assess whether students with higher reading or 
mathematical competence in Grade 9 as compared to other students 
demonstrate higher ICT literacy three years later. Furthermore, this 
cross-lagged panel analysis also considers potential reverse effects to 
evaluate whether prior ICT literacy influences later reading and math-
ematical competence.

Together, these studies aim to examine the cross-sectional and lon-
gitudinal relationships between ICT literacy and conventional literacies. 
Theoretical considerations outlined above including multiple docu-
ments literacy (Rouet, 2006), cognitive load theory (Sweller, 2024), and 
dual coding theory (Sadoski & Paivio, 2013) suggest that reading 
comprehension contributes to ICT literacy, while multiple documents 
literacy also points to possible reverse effects. Similarly, Cattell’s (1987)
investment theory and overlap theory (Kovacs & Conway, 2016) provide 
a basis for expecting reciprocal relationships between ICT literacy and 
math competencies. Building on these theoretical perspectives, the two 
studies aim to address the following research questions: (a) To what 
extent do reading and mathematical literacies explain individual dif-
ferences in ICT literacy? (b) Are there reciprocal effects over time be-
tween ICT literacy and conventional literacies?

5. Study 1: Variance decomposition of ICT items

5.1. Methods

5.1.1. Sample and procedure
The participants were part of the multi-cohort National Educational 

Panel Study (NEPS), which follows German adolescents throughout their 
life course (Blossfeld & Roßbach, 2019). This study analyzes two waves 
of data from a cohort of upper secondary school students representing 
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the population of Grade 9 students (see Aßmann et al., 2019, for the 
detailed sampling strategy). In Grade 9, a total of N = 13,335 students 
(50% girls) with a mean age of 15.43 years (SD = 0.62) participated in 
the literacy assessments. Of these, 25% had a migrant background, 
meaning that either the student or at least one of their parents were born 
outside of Germany, and 37% were enrolled in academic tracks. In 
Grade 12, a subsample of the initially assessed sample from academic 
tracks, N = 3,690 students (56% girls), participated a second time. These 
students had a mean age of 17.90 years (SD = 0.47) and 19% of them 
reported having a migrant background.

5.1.2. Instruments

5.1.2.1. ICT literacy. ICT literacy was measured in each grade using 
achievement tests specifically developed for the NEPS that were based 
on established frameworks from international large-scale studies 
(Senkbeil et al., 2013). The tests were designed to capture digital skills in 
diverse areas and distinguished four process components referring to 
accessing, creating, managing, and evaluating information with digital 
technologies (see Senkbeil et al., 2013, for details). Each test item tar-
geted one or two of these components and described realistic problems 
to be solved with common technologies (e.g., browsers, search engines, 
spreadsheets). Two example items are shown in Fig. 1. The two tests 
administered in Grades 9 and 12 included 35 and 27 multiple-choice 
items, respectively, that each had to be finished within 28 min. Simple 
multiple-choice items required respondents to identify a single correct 
response option out of four to six response options, while complex 
multiple-choice items presented between two to ten subtasks with bi-
nary response options each. Simple items were scored dichotomously 
(correct/incorrect), while complex items were scored polytomously 
based on the number of correct subtasks. Although the four process 
components guided the item development to establish a comprehensive 
construct coverage, the underlying theoretical framework conceptual-
ized ICT literacy as a unidimensional construct (Senkbeil et al., 2013). 
Accordingly, psychometric analyses conduced on the present sample 
supported this assumption for both tests by confirming not only essential 
unidimensionality based on the partial credit model (PCM; Masters, 
1982) but also negligible differential item functioning across various 
subgroups (see Senkbeil & Ihme, 2012, 2017a). Proficiency scores for 

each respondent were estimated as weighted likelihood estimates (WLE; 
Warm, 1989) that provide unbiased person parameters from item 
response models.

5.1.2.2. Reading comprehension. The ability to understand written texts 
was measured with 33 items in Grade 9 and 29 items in Grade 12 that 
were specifically developed for the NEPS (see Gehrer et al., 2013 for the 
construction rationale). These items referred to five different text types 
(i.e., information, instruction, advertising, commenting, and literary 
texts) and addressed three different cognitive requirements (i.e., finding 
information in the text, drawing text-related conclusions, and reflecting 
and assessing) using different response formats including multiple- 
choice or matching tasks. The text types and cognitive requirements 
were independently distributed across the items of each test. To ensure 
robust psychometric properties, the tests were scaled using the unidi-
mensional PCM (Masters, 1982), resulting in good marginal reliabilities 
based on the item response model (see Adams, 2005) of 0.81 and 0.80, 
respectively. The item responses in each grade showed a good fit to the 
item response model, supporting essential unidimensionality and 
negligible differential item functioning (see Gnambs et al., 2017; Hab-
erkorn et al., 2012). Proficiency scores for each respondent were esti-
mated as weighted likelihood estimates (WLE; Warm, 1989).

5.1.2.3. Mathematical competence. The math tests were based on a 
common theoretical framework covering five content areas (quantity, 
shape and space, change and relationship, and data and chance) and six 
cognitive components required to solve the presented tasks (Neumann 
et al., 2013). Adhering to the literacy concept (Weinert et al., 2019), the 
tests emphasized the relevance of mathematical competencies for 
effective participation in society, rather than aligning strictly with spe-
cific school curricula. The tests comprised 22 items in Grade 9 and 31 
items in Grade 12 with multiple-choice and short constructed-response 
formats. Each item required solving mathematical problems that were 
embedded in real-life contexts relevant for the specific age group. Both 
tests were scaled using the unidimensional PCM (Masters, 1982) and 
showed good marginal reliabilities (Adams, 2005) of 0.81 and 0.77, 
respectively. Again, the content areas and cognitive components guided 
the development of the items to cover the breadth of the construct, but 
the theoretical framework considered mathematical literacy a 

Fig. 1. Example items of the ICT literacy tests. 
Note. Copyright Leibniz Institute for Educational Trajectories (LIfBi). Reproduced with permission.
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unidimensional construct (Neumann et al., 2013). Accordingly, psy-
chometric analyses conducted separately for the two tests confirmed 
good fits of the item responses to the PCM and suggested essentially 
unidimensional scales (see Duchhardt & Gerdes, 2013; Fischer et al., 
2017). Person scores were estimated as WLEs (Warm, 1989).

5.1.2.4. Perceptual speed. A speeded test with three items assessed the 
ability to quickly identify and discriminate about visual stimuli. The 
search task for each item followed the concept of popular tests of mental 
speed (see Schmitz & Wilhelm, 2019) and required participants to match 
31 figures to one of nine targets within 30 s (see Gnambs et al., 2021). 
The sum score across the number of correctly matched targets for each 
item showed an omega reliability of 0.81. The test was only adminis-
tered in Grade 9.

5.1.2.5. Reasoning. Figural reasoning was measured with a test devel-
oped following the popular progressive matrices tasks by Raven (see 
Murphy et al., 2023). The 12 items included in the test required par-
ticipants to identify a rule from a set of patterns and select the corre-
sponding pattern from six response options that logically completed the 
set (see Gnambs et al., 2021). Designed as a brief cognitive measure 
rather than a full cognitive assessment for individual diagnostics, the 
sum score showed a categorical omega reliability of 0.71. The test was 
only administered in Grade 9.

5.1.3. Statistical analyses
The ICT test in each grade was analyzed using confirmatory ordinal 

factor analyses with a weighted least square estimator and a mean and 
variance adjusted test statistic (Beauducel & Herzberg, 2006) in R (R 
Core Team, 2024) using the lavaan package (Version 0.6–19; Rosseel, 
2012). After confirming unidimensional measurement models for each 
ICT test, the latent variable models were extended to multiple indicator 
multiple causes (MIMIC) models (Wang & Shih, 2010). To this end, the 
latent factor representing ICT literacy and each ICT item score that 
served as manifest indicators for the latent factors were regressed on 
four cognitive scores (i.e., math, reading, perceptual speed, reasoning) 
simultaneously in a single model. No direct effects of the cognitive 
scores were modeled for five indicators as identification constraints, that 
is, the respective regression coefficients were fixed to 0. The path dia-
gram of the respective MIMIC model is illustrated in Fig. 2. The variance 
explained in each indicator for which direct effects of the covariates 
were specified was calculated to partition the indicator variance into 
that explained by the latent factor and each cognitive score.

Model fit of the confirmatory factor analyses were evaluated using 
dynamic fit indices which were derived from 100 Monte Carlo samples 
following McNeish (2023). These represent thresholds for the 

comparative fit index (CFI), root mean squared error of approximation 
(RMSEA), and standardized root mean residuals (SRMR) that indicate 
satisfactory goodness-of-fit for the unidimensional factor models 
examined in the current study. The dynamic fit indices estimated with 
the dynamic package (Wolf & McNeish, 2025) suggested goodness-of-fit 
thresholds for the Grade 9 and 12 tests, respectively, of 0.98/0.94 for the 
CFI, 0.02/0.02 for the RMSEA, and 0.04/0.03 for the SRMR.

The raw data including the study material is available after regis-
tration at NEPS Network (2024). Documented analysis code and results 
are provided at https://osf.io/jvc87/.

5.2. Results

Goodness-of-fit indices supported satisfactory measurement models 
of both ICT literacy tests administered in the two grades. In Grade 9, the 
unidimensional factor model (χ2 = 1656, df = 620) showed good fit with 
a CFI of 0.99, a RMSEA of 0.01, and SRMR of 0.02, that did not meet the 
thresholds of the dynamic fit indices for non-negligible misspecification. 
The standardized factor loadings ranged from 0.22 to 0.66 (Mdn = 0.45), 
resulting in an acceptable categorical reliability of 0.85. For the test 
administered in Grade 12 (χ2 = 519, df = 386), fit indices were also good 
with CFI = 0.98, RMSEA = 0.01, and SRMR = 0.03, standardized factor 
loadings falling between and 0.10 and 0.47 (Mdn = 0.32), and a cate-
gorical omega reliability of 0.70.

The correlations between ICT literacy and the four cognitive ability 
scores are shown in Table 1. As expected, ICT literacy in Grade 9 showed 
strong correlations with reading (r = 0.66, p < .001) and math compe-
tencies (r = 0.64, p < .001), reflecting substantial shared variance across 
these domains. In Grade 12, these correlations were somewhat smaller, 
with reading and math correlating at r = 0.44 (p < .001) and r = 0.52 (p 
< .001), respectively. In contrast, the correlations between ICT literacy 
and both logical reasoning and perceptual speed were notably weaker in 
both grades. It is important to note, however, that these bivariate cor-
relations do not inform about the unique contribution of each cognitive 
domain to ICT literacy.

In Grade 9, the MIMIC model (χ2 = 1607, df = 636, CFI = 0.94, 
RMSEA = 0.01, SRMR = 0.03) showed similar effects of math and 
reading on the latent ICT factor with standardized regression weights (β) 
of 0.41 (p < .001) and 0.43 (p < .001), respectively. Perceptual speed (β 
= 0.01, p = .407) and reasoning abilities (0.12, p < .001), on the other 
hand, had smaller effects. The direct effects on the manifest factor in-
dicators were substantially smaller, with median absolute standardized 
regression weights below 0.05 for all cognitive scores. Fig. 1 (top plot) 
shows that the latent ICT factor accounted for Mdn = 46% of the 
explained item variances, while math and reading explained about Mdn 
= 25% and 26%, respectively. Perceptual speed (Mdn = 0%) and 

Fig. 2. Simplified path diagram of multiple indicator multiple causes model in 
study 1. 
Note. I01 to I35 represent the item scores for the ICT literacy test, while math, 
reading, reasoning, and speed represent the cognitive ability scores. The direct 
effect of cognitive abilities on Item I03 was constrained to 0 for identification.

Table 1 
Means, standard deviations, and correlations between variables in study 1.

M SD Correlations

ICT Reading Math Speed

Grade 9
ICT Literacy 0.01 0.94
Reading 
comprehension

− 0.02 1.26 0.66*

Math competencies 0.04 1.22 0.64* 0.54*
Speed 59.14 13.94 0.09* 0.09* 0.07*
Reasoning 8.66 2.45 0.49* 0.46* 0.49* 0.12*

Grade 12
ICT Literacy 0.91 0.70
Reading 
comprehension

0.32 0.87 0.44*

Math competencies 0.29 1.07 0.52* 0.36*
Speed 60.95 12.27 0.03* 0.06* 0.03
Reasoning 9.86 1.74 0.27* 0.20* 0.31* 0.11

Note. N = 13,335 (Grade 9) and 3,690 (Grade 12). Results are based on WLE 
(Warm, 1989) and sum scores. * p < .05.
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reasoning (Mdn = 2%) contributed negligibly to the variances in ICT 
item scores. Although there were slight differences in the share of 
explained variances across items, the latent factor explained the largest 
share in all items.

Analyses of the test administered in Grade 12 (χ2 = 2268, df = 386, 
CFI = 0.94, RMSEA = 0.01, SRMR = 0.03) revealed similar results. Math 
(β = 0.53, p < .001) and reading (β = 0.47, p < .001) strongly predicted 
the latent ICT factor, whereas perceptual speed (β = 0.01, p = .856) and 
reasoning (β = 0.12, p < .001) showed weaker effects. Direct effects on 
the manifest factor indicators were small, with the median absolute 
standardized regression weights falling at 0.09 for math, 0.13 for 
reading, and below 0.05 for reasoning and perceptual speed. Fig. 3
(bottom plot) shows that the latent ICT factor explained about Mdn =
27% of the item variance. While math (Mdn = 35%) and reading (Mdn 
= 34%) also accounted for substantial proportions of the item variances, 
perceptual speed (Mdn = 0%) and reasoning (Mdn = 2%) were less 
relevant. Again, little variation in the shares of explained variance was 
observed across the different items.

6. Study 2: Cross-lagged panel modeling

6.1. Materials and method

6.1.1. Sample and procedure
The participants were part of another NEPS cohort that was initially 

sampled to represent Grade 5 students in secondary schools across 
Germany (Blossfeld & Roßbach, 2019). The analysis sample was limited 
to N = 4,872 students (48 % female) with an average age of 11.89 years 
(SD = 0.50) who participated in the assessment of ICT literacy in Grade 
6. Approximately 25% had a migrant background and about 48% 
attended academic tracks. ICT literacy of these students was repeatedly 
assessed in Grades 6, 9, and 12, while math and reading competencies of 
the same sample were measured in Grades 5, 9, and 12. For those leaving 
school after ninth grade, a reduced testing program was conducted at 
home using a shortened ICT test. This reduced testing program included 
only two of the three test domains (ICT, math, and reading), while 
students who remained in school completed all three test domains. 
Further details on the cohort, sampling, and assessment procedures can 
be found in Thums et al. (2023).

6.1.2. Instruments

6.1.2.1. ICT literacy. ICT literacy was assessed in Grades 6, 9, and 12 
using 30, 60, and 32 multiple-choice items, respectively, based on the 
framework by Senkbeil et al. (2013). In Grade 6, all students completed 
the same set of items, whereas the assessments in Grades 9 and 12 used a 
branched testing design that assigned different test versions based on the 
student’s previous performance (see Pohl, 2013). The test versions 
included several common items which to facilitate linking and place-
ment on a common scale. Each test had a time limit of 28 min. The item 
responses of each test were scaled separately using the unidimensional 
PCM (Masters, 1982), resulting in marginal reliabilities based on the 
item response model (Adams, 2005) of 0.70, 0.82, and 0.65 in Grades 6, 
9, and 12, respectively. Comprehensive psychometric evaluations in the 
current sample confirmed a good fit to the adopted item response model, 
essential unidimensionality, and negligible differential item functioning 
(Senkbeil et al., 2014; Senkbeil & Ihme, 2017b, 2021). Proficiency 
scores were represented by 30 plausible values were drawn from the 
posteriori distribution of each respondent’s ability based on the PCM 
(Mislevy, 1991).

6.1.2.2. Reading comprehension. Reading competencies were assessed 
with different tests following Gehrer et al. (2013) with 33, 46, and 41 
items in the three grades. The tests administered in Grades 9 and 12 
implemented a branched testing design with overlapping anchor items 
to enable linking across test forms (Pohl, 2013). All tests were scaled 
using the unidimensional PCM (Masters, 1982) and resulted in marginal 
reliabilities (Adams, 2005) of 0.77, 0.81, and 0.80, respectively. Psy-
chometric evaluations confirmed good fits to the item response model 
and essentially unidimensional measurement models that were compa-
rable across relevant subgroups (Kirsch & Lennon, 2017; Scharl & Zink, 
2022; Kutscher & Scharl, 2020). Proficiency estimates were derived as 
30 plausible values for each respondent based on the item response 
model (Mislevy, 1991).

6.1.2.3. Mathematical competence. The math tests in Grades 5, 9, and 12 
were developed following Neumann et al. (2013) and included 25, 34, 
and 30 items, respectively, in the three grades. Again, the tests for 
Grades 9 and 12 employed a branched testing design ot tailor item dif-
ficulty based on students’ prior performance. All tests were scaled 
separately using the unidimensional PCM (Masters, 1982), resulting in 
marginal reliabilities (Adams, 2005) of 0.78, 0.81, and 0.77, respec-
tively. Also, further analyses demonstrated satisfactory psychometric 
properties of the three tests such as good item fit and unidimensionality 

Fig. 3. Variance decomposition of ICT item scores. 
Note. Items are presented in ascending order of the percentage of variance 
explained by the ICT factor.
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(see Petersen et al., 2020; Schnittjer & Gerken, 2017; Van den Ham 
et al., 2018). A set of 30 plausible values was used to represent the re-
spondents’ latent proficiencies (Mislevy, 1991).

6.1.2.4. Auxiliary variables. The analysis acknowledged several 
measured confounders. Students’ self-reported gender was recorded as a 
binary variable (0 = boy, 1 = girl). Migrant background (coded as 0 =
without and 1 = with) indicated whether the student or at least one 
parent was born outside of Germany. Socioeconomic status (SES) was 
measured using the highest number of years of education attained by the 
student’s parents (Brauns et al., 2003). School type distinguished be-
tween secondary schools with (1) and without academic tracks (0). 
Lastly, basic cognitive capacity was measured in Grade 5 using the same 
instruments as in the previous study. Figural reasoning was measured 
with 12 items (see Gnambs et al., 2021), while perceptual speed was 
assessed using 3 items (see Gnambs et al., 2021). Figural reasoning 
scores were scaled using the unidimensional Rasch (1960) model to 
derive 30 plausible values for each respondent. Perceptual speed was 
operationalized as the number of correctly solved tasks within a 30-s 
time limit; the total number of correct responses served as indicator of 
respondents’ abilities. Both tests demonstrated satisfactory reliabilities, 
with omega coefficients of 0.79 for reasoning and 0.80 for perceptual 
speed.

6.1.3. Statistical analyses
Reciprocal effects between ICT literacy, mathematics, and reading 

were examined using cross-lagged panel modes (CLPMs) within a 
structural equation modeling (SEM) framework. These models incor-
porated autoregressive paths to predict performance in one domain from 
its prior performance and prior performance in the other domains 
(Duncan, 1969). Residual variances for the three domains were allowed 
to correlate at each time point to account for concurrent associations. To 
more robustly estimate potential causal effects, a CLPM with lag-2 paths 
was specified which controlled for the performance from the two prior 
measurement occasions instead of just one, as in traditional CLPMs 
(Lüdtke & Robitzsch, 2022). This approach helps reduce bias due to 
unobserved confounders (Marsh et al., 2022; Marsh et al., 2023; Mur-
ayama & Gfrörer, 2024) and has been shown to yield more consistent 
cross-lagged effects than alternative modeling strategies (Orth et al., 
2021b). Additionally, students’ gender, migrant background, socioeco-
nomic status, school track, reasoning, and perceptual speed were 
included as covariates in the analyses to control for measured 
confounders.

Because the model is just-identified, goodness-of-fit indices are not 
reported. To identify the most parsimonious model, several hierar-
chically nested models were compared. These included (a) a baseline 
model with no constraints on the cross-lagged effects between Grades 9 
and 12, (b) models constraining the cross-lagged effects between ICT 
literacy and either reading or math to 0, (c) models constraining these 
cross-lagged effects to equality, (d) models constraining either the cross- 
lagged effects for math and reading on ICT literacy or the effects of ICT 
literacy on math and reading to equality, and (e) a model constraining 
all cross-lagged effects to equality (see Table 3). Model comparisons 
followed an information-theoretic approach based on Akaike’s (1973)
Information Criterion (AIC). Rather than testing each constraint in 
isolation, Akaike weight were computed to evaluate the relative likeli-
hood of each model being the best-fitting among the candidate set 
(Burnham & Anderson, 2002). This approach facilitates a comprehen-
sive model ranking based on the strength of the empirical evidence. 
Additionally, results from conventional chi-squared difference tests be-
tween nested models are reported, where non-significant values indicate 
support for the imposed constraints.

SEM estimation was performed in R (R Core Team, 2024) using the 
packages lavaan (Version 0.6–19; Rosseel, 2012) and lavaan.mi 
(Jorgensen & Rosseel, 2024). The analyses used the test statistic 

proposed by Yuan and Bentler (2000) and estimated cluster-robust 
standard errors (Savalei, 2014) to account for the hierarchical nesting 
of students within schools. Latent variables for the cognitive domains 
were modeled using 30 plausible values (Mislevy, 1991). Plausible value 
estimation for the three literacy domains were generated with the 
NEPSscaling package (Version 2.2.0; Scharl & Zink, 2022), while they 
were estimated with the TAM package (Robitzsch et al., 2024) for 
reasoning. As perceptual speed was assessed with a timed test, manifest 
scores were used in the analyses rather than plausible values. Missing 
data were addressed through multiple imputations using classification 
and regression trees (Burgette & Reiter, 2010) in the mice package 
(Version 3.17.0; Van Buuren & Groothuis-Oudshoorn, 2011). Accord-
ingly, the statistical analyses were independently repeated for each 
plausible value and imputed dataset (see Jewsbury et al., 2024). The 
resulting estimates were then pooled using Rubin (2004) rules. To 
facilitate interpretation, all competence scores were z-standardized 
relative to the means and standard deviations in Grade 9. Thus, all 
regression parameters refer to a standardized scale (with M = 0 and SD 
= 1) for ninth-grade competencies.

The raw data and study materials are available upon registration at 
NEPS Network (2023). The documented analysis code and results are 
provided at https://osf.io/jvc87/.

6.2. Results

Fig. 4 presents violin plots illustrating the distributions of latent ICT 
literacy, math, and reading scores across the three measurement occa-
sions. These distributions reveal substantial variability both within and 
across grades, indicating pronounced individual differences in all three 
domains. As expected, the latent scores for each domain showed sub-
stantial stability across Grades 9 and 12, with correlations of r = 0.81, 
95% CI [0.80, 0.82], for ICT literacy, r = 0.84, 95% CI [0.83, 0.85], for 
math, and r = 0.70, 95% CI [0.68, 0.71], for reading (see Table 2). 
Additionally, the longitudinal cross-domain correlations with ICT liter-
acy were r = 0.78, 95% CI [0.77, 0.79], for math and r = 0.69, 95% CI 
[0.67, 0.70], for reading, indicating substantial associations between 
ICT literacy and more traditional educational domains. Although these 
correlations suggest notable relationships between ICT literacy, math, 
and reading, they do not establish causal effects because confounders 
may have similarly influenced all three domains. For example, each was 
substantially correlated with reasoning abilities and, to a lesser extent, 
with perceptual speed (see Table 2). Moreover, several auxiliary vari-
ables were associated with the literacy scores in the three domains. Boys, 
students without a migrant background, those with higher socioeco-
nomic status, and students attending schools with academic tracks 
demonstrated higher ICT literacies, with median correlations across the 
three time points of Mdn(r) = 0.05, 0.20, 0.36, and 0.46, respectively. 
Comparable patterns were observed for math and reading.

Reciprocal effects were examined using the CLPM with lag-2 effects. 
To identify the most parsimonious model, various constraints were 
applied to the cross-lagged effects between Grades 9 and 12. Initially, 
two models were estimated in which the cross-lagged effects for either 
math or reading were constrained to 0. Both models showed signifi-
cantly (p < .001) poorer fit compared to the unconstrained model that 
estimated cross-lagged effects for both domains, indicating meaningful 
reciprocal effects for both domains. Subsequently, several models with 
different equality constraints on the cross-lagged effects were compared 
(see Table 3). An information-theoretic evaluation across all eight 
models using the AIC revealed that the baseline model without con-
straints on the cross-lagged paths (Model 1) had the highest probability 
(about 80%) of representing the true effects. The second-best model 
(Model 7) which constrained the cross-lagged effects from ICT literacy to 
math and reading to be equal had a considerably lower probability of 
20%. These results suggest that the reciprocal effects between ICT lit-
eracy, reading, and math differ in magnitude, supporting the examina-
tion of the unconstrained estimates.
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The structural effects of the CLPM without equality constraints on 
the cross-lagged effects (Model 1) are presented in Table 4. These 
showed notable stability between Grade 9 and Grade 12 for all domains 
(all ps < 0.001). In addition, math and reading in Grade 9 exhibited 
significant (all ps < 0.001) cross-lagged effects on ICT literacy in Grade 
12. The standardized cross-lagged effect of math (β = 0.21) was larger 
than that for reading (β = 0.07), indicating that students with higher 
math or reading competencies in Grade 9 also had higher ICT literacy in 
Grade 12 compared to students with lower competencies. For the 
reverse direction, the standardized effects were β = 0.09 for math and β 
= 0.13 for reading. Thus, ICT literacy in Grade 9 also explained changes 
in math and reading three years later. The results for the respective ef-
fects between the first two measurements cannot be readily compared to 
those for Grades 9 and 12 because they did not include lag effects of the 
second order. Therefore, these are not evaluated further.

Together, these results suggest that students with higher math or 
reading scores in Grade 9 exhibited higher ICT scores in Grade 12 
compared to students with lower competencies, while individual dif-
ferences in ICT literacy in Grade 9 predicted changes in subsequent math 
and reading competencies.

7. Discussion

While there is broad consensus that ICT literacy represents a crucial 
competence for individuals in an increasingly digitalized world (see 
Falck et al., 2021; Hertweck & Lehner, 2025; Lei et al., 2021), its 

underlying cognitive foundations have remained a rather underexplored 
area. Although existing theoretical frameworks conceptualize ICT lit-
eracy as a combination of technical skills and various cognitive abilities 
(e.g., ETS, 2002; Fraillon & Duckworth, 2025; Senkbeil et al., 2013), the 
specific cognitive components contributing to ICT literacy have, with 
some notable exceptions (Engelhardt et al., 2020; Senkbeil, 2022; 
Senkbeil & Ihme, 2020; Wicht et al., 2021), seldom been explicitly 
outlined or empirically examined. To address this gap, the present 
research studied the relationship between ICT literacy and two 
domain-specific competence domains, reading comprehension and 
mathematical abilities, that are considered essential for successful 
participation in society (Weinert et al., 2019).

A variance decomposition analysis of two ICT literacy assessments 
revealed that ICT literacy partially reflects reading comprehension and 
mathematical competence. While variance components unique to ICT 
literacy accounted for over one-third of the explained item variances, 
reading comprehension, and mathematical competencies each 
explained approximately one-quarter of the variances. In contrast, the 
effects of basic cognitive capacities were negligible, likely due to their 
substantial overlap with domain-specific competencies (Peng et al., 
2019; Pokropek et al., 2022). Notably, the variance decomposition 
showed little variation across individual items, suggesting that item- 
specific characteristics such as text complexity or the degree of mathe-
matical content played only a minor role. These findings highlight that 
ICT literacy subsumes unique cognitive abilities such as technological 
skills as well as more established domain-specific competencies.

Fig. 4. Distributions of ICT, math, and reading scores across grades. 
Note. Competencies were z-standardized with respect to the second measurement.

Table 2 
Means, standard deviations, and correlations between variables in study 2.

ICT literacy Math competencies Reading comprehension Speed

M SD MV Grade 6 Grade 9 Grade 12 Grade 5 Grade 9 Grade 12 Grade 5 Grade 9 Grade 12

ICT literacy
Grade 6 − 1.06 0.81 0.00
Grade 9 0.00 1.00 35.00 0.76*
Grade 12 0.48 0.74 48.21 0.75* 0.81*

Math competencies
Grade 5 − 1.00 0.96 5.56 0.77* 0.75* 0.76*
Grade 9 0.00 1.00 34.75 0.72* 0.80* 0.78* 0.84*
Grade 12 0.62 0.92 47.17 0.68* 0.72* 0.77* 0.80* 0.84*

Reading comprehension
Grade 5 − 1.28 1.20 5.54 0.76* 0.70* 0.67* 0.81* 0.70* 0.63*
Grade 9 0.00 1.00 40.33 0.69* 0.75* 0.69* 0.68* 0.70* 0.62* 0.71*
Grade 12 0.56 0.95 49.61 0.66* 0.68* 0.69* 0.66* 0.67* 0.62* 0.69* 0.70*
Speed 44.30 13.47 5.34 0.14* 0.11* 0.10* 0.07* 0.07* 0.05* 0.07* 0.09* 0.08*
Reasoning 0.03 0.97 5.64 0.59* 0.59* 0.60* 0.65* 0.65* 0.62* 0.60* 0.53* 0.52* 0.15*

Note. N = 4,872. MV = Percentage of missing values. Results are based on multiply imputed plausible values. Competencies were z-standardized with respect to the 
mean and standard deviation of the second measurement. * p < .05.
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Analyses of reciprocal relationships between ICT literacy, reading, 
and mathematics suggest that the three domains mutually reinforce each 
other over time during adolescence. Although the cross-lagged effects 
from mathematics to ICT literacy were somewhat larger than those from 
reading, both effects were substantial. A review of standardized cross- 
lagged effects in psychological research (Orth et al., 2024) found 
average effects around 0.07, with values exceeding 0.12 considered 
large. In the present study, the standardized cross-lagged effects of 
reading and mathematics on ICT literacy were approximately 0.07 and 
0.21, respectively, placing them in the upper middle range of previously 
observed cross-lagged effects. Another way to put these effects into 
perspective is to compare them to typical learning gains over the course 
of a normal school year. Prior research has shown that students in Grade 
9 tend to improve in reading and mathematics by about Cohen’s d =
0.19 and 0.25, respectively (equivalent to r = 0.10 and 0.12) across an 
academic year (Bloom et al., 2008). Thus, the observed cross-lagged 
effects in this study correspond to gains of a similar or greater magni-
tude, emphasizing their practical relevance.

These findings indicate that while both reading comprehension and 
mathematical competence contribute to the development of ICT liter-
acy, mathematical skills appear to exert a stronger influence. Similar 
results have been reported in cross-sectional analyses, which showed 
that general problem-solving abilities have a more pronounced effect on 
ICT literacy than reading comprehension (Engelhardt et al., 2020). 
Although the analyses controlled for initial fluid reasoning and 
perceptual speed, it remains plausible that the observed effects of 
mathematics partly reflect unaccounted aspects of general cognitive 
abilities that developed during the same period. Importantly, these re-
lationships were not unidirectional. Rather, the results support a 
reciprocal dynamic, in which ICT literacy also contributes to the growth 
of conventional literacies, supporting respective theoretical conjectures 
(e.g., Kovacs & Conway, 2016; Rouet, 2006).

7.1. Limitations

Several limitations should be acknowledged that might affect the 
generalizability of the present findings. First, in line with previous 
research (e.g., Jin et al., 2020), this study relied on knowledge-based 
assessments of ICT literacy to evaluate individuals’ declarative and 
procedural knowledge of digital technologies. However, performance- 
based assessments, which require test-takers to actively generate solu-
tions in interactive digital tasks, may provide a more comprehensive 
assessment of ICT literacy (Siddiq et al., 2016). While both types of 
measures are often highly correlated and capture similar constructs 
(Ihme et al., 2017; Senkbeil & Ihme, 2020), future research could 
examine whether cognitive abilities influence knowledge-based and 
performance-based assessment types differentially. Second, the fluid 
reasoning test used in this study was relatively brief and exhibited a 
slight ceiling effect in one of the samples (see Table 1). While the 
measure demonstrated adequate reliability for group-level analyses, 
future research should replicate the reported findings using more 
comprehensive assessments of general cognitive functioning to further 
evaluate the robustness and generalizability of the presented results. 
Third, there is an ongoing debate about the most appropriate way to 
analyze bidirectional effects with CLPMs (e.g., Murayama & Gfrörer, 
2024; Orth et al., 2021a). Many of them are not well-suited for panel 
studies because they address improper estimands or have substantial 
data requirements. Following prior research (Marsh et al., 2022; Marsh 
et al., 2023), differential change analyses were employed to assess 
whether students with higher reading or mathematical abilities at one 
point exhibited higher ICT literacy at a later stage. Although this 
approach can account for many confounding influences (Lüdtke & 
Robitzsch, 2022), unaccounted effects of, for example, memory capacity 
or test motivation cannot be completely ruled. Fourth, the studies 
focused on German students which may limit the generalizability of the 
findings to other cultural or educational contexts. Therefore, replication 

Table 3 
Summary of model comparisons.

Model χ2 df p AIC ΔAIC Weight

1. Unconstrained cross- 
lagged effects

0.00 0 – 67,890 0.00 79.8%

2. No cross-lagged 
effects for math

40.27 2 <

0.001
68,311 421 0.0%

3. No cross-lagged 
effects for reading

33.86 2 <

0.001
67,902 13 0.1%

4. Equal cross-lagged 
effects for ICT on 
math and math on 
ICT

5.14 1 0.023 67,905 15 0.0%

5. Equal cross-lagged 
effects for ICT on 
reading and reading 
on ICT

3.95 1 0.047 67,901 11 0.3%

6. Equal cross-lagged 
effects for math and 
reading on ICT

16.11 1 <

0.001
67,928 39 0.0%

7. Equal cross-lagged 
effects for ICT on 
math and reading

1.68 1 0.195 67,893 3 19.7%

8. Equal cross-lagged 
effects for math and 
reading

14.60 3 0.002 67,919 39 0.0%

Note. χ2 = Chi-squared test statistic; df = Degrees of freedom; p = p-value for χ2; 
AIC = Akaike’s information criterion; ΔAIC = Difference in AIC as compared to 
Model 1; Weight = Posterior probability of model. Cross-lagged effects refer to 
lag-1 effects between Grades 9 and 12.

Table 4 
Structural coefficients for cross-lagged panel model.

B SE β

Autoregressive effects for ICT
Grade 6 ⇨ Grade 9 0.50* 0.03 0.40
Grade 6 ⇨ Grade 12 0.17* 0.02 0.19
Grade 9 ⇨ Grade 12 0.27* 0.02 0.37

Autoregressive effects for math
Grade 7 ⇨ Grade 9 0.60* 0.03 0.58
Grade 7 ⇨ Grade 12 0.26* 0.03 0.27
Grade 9 ⇨ Grade 12 0.46* 0.03 0.50

Autoregressive effects for reading
Grade 7 ⇨ Grade 9 0.26* 0.03 0.31
Grade 7 ⇨ Grade 12 0.13* 0.03 0.16
Grade 9 ⇨ Grade 12 0.21* 0.03 0.23

Cross-lagged effects for math on ICT
Grade 7 ⇨ Grade 9 0.31* 0.03 0.30
Grade 7 ⇨⇨ Grade 12 0.08* 0.03 0.10
Grade 9 ⇨ Grade 12 0.16* 0.02 0.21

Cross-lagged effects for reading on ICT
Grade 7 ⇨ Grade 9 0.08* 0.02 0.10
Grade 7 ⇨ Grade 12 − 0.01 0.02 − 0.02
Grade 9 ⇨ Grade 12 0.05* 0.02 0.07

Cross-lagged effects for ICT on math
Grade 6 ⇨ Grade 9 0.22* 0.03 0.18
Grade 6 ⇨ Grade 12 0.06* 0.03 0.05
Grade 9 ⇨ Grade 12 0.08* 0.02 0.09

Cross-lagged effects for ICT on reading
Grade 6 ⇨ Grade 9 0.35* 0.03 0.28
Grade 6 ⇨ Grade 12 0.14* 0.03 0.12
Grade 9 ⇨ Grade 12 0.12* 0.03 0.13

Cross-lagged effects for math on reading
Grade 7 ⇨ Grade 9 0.14* 0.04 0.13
Grade 7 ⇨ Grade 12 0.06* 0.04 0.06
Grade 9 ⇨ Grade 12 0.15* 0.03 0.16

Cross-lagged effects for reading on math
Grade 7 ⇨ Grade 9 0.00 0.02 0.00
Grade 7 ⇨ Grade 12 − 0.06* 0.02 − 0.08
Grade 9 ⇨ Grade 12 0.02 0.02 0.02

Note. N = 4,872. B = Regression coefficient; SE = Standard error of B; β =
Standardized regression coefficient. Based on 30 plausible values. Effects for 
covariates are not reported. The effects of interest are highlighted.

* p < .05.
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of the presented results in other countries is highly encouraged. Finally, 
this study focused on two key domains, reading, and mathematics, for 
modern citizens. A more comprehensive exploration of the cognitive 
basis of ICT literacy could consider additional cognitive abilities such as 
fluid intelligence, memory, and attention control to develop a more 
holistic understanding of how basic cognitive functions contribute to 
ICT literacy development.

7.2. Conclusion

ICT literacy integrates various cognitive abilities that support the 
effective use of digital technologies. Two studies with German students 
consistently highlighted the importance of reading comprehension and 
mathematical competencies for ICT literacy. Notably, reading and 
mathematics accounted for approximately half of the explained item 
variances in ICT literacy assessments and also predicted longitudinal 
changes in ICT literacy over three years. These findings provide 
empirical evidence on the cognitive foundation of ICT literacy and 
emphasize that digital skills are not solely technical but are also closely 
linked to broader cognitive abilities.
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